Optimal marker gene selection for cell type discrimination in single cell analyses
The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that impleme...
Guardado en:
Autores principales: | Bianca Dumitrascu, Soledad Villar, Dustin G. Mixon, Barbara E. Engelhardt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination
por: Lars Muhl, et al.
Publicado: (2020) -
Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr
por: Lingfei Wang
Publicado: (2021) -
Publisher Correction: Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination
por: Lars Muhl, et al.
Publicado: (2020) -
Single-cell analyses identify bioengineered niches for enhanced maintenance of hematopoietic stem cells
por: Aline Roch, et al.
Publicado: (2017) -
Feature selection revisited in the single-cell era
por: Pengyi Yang, et al.
Publicado: (2021)