Deceptive Online Content Detection Using Only Message Characteristics and a Machine Learning Trained Expert System
This paper considers the use of a post metadata-based approach to identifying intentionally deceptive online content. It presents the use of an inherently explainable artificial intelligence technique, which utilizes machine learning to train an expert system, for this purpose. It considers the role...
Guardado en:
Autores principales: | Xinyu (Sherwin) Liang, Jeremy Straub |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a73b553bc4b14367b11ba7d897bf5470 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
University Community Members’ Perceptions of Labels for Online Media
por: Ryan Suttle, et al.
Publicado: (2021) -
The Effect of Positive and Negative Signals on Perceived Deceptiveness of Websites in Online Markets
por: Mavlanova,Tamilla, et al.
Publicado: (2015) -
FEATURES TO DISTINGUISH BETWEEN TRUSTWORTHY AND FAKE NEWS
por: Daniel CHOVANEC, et al.
Publicado: (2021) -
FABRICANDO "VERDADES", OCULTANDO LA HISTORIA Y "HACIENDO" UNIVERSIDAD
por: ORELLANA BENADO,M. E.
Publicado: (2020) -
Understanding Purchase Intention in O2O E-Commerce: The Effects of Trust Transfer and Online Contents
por: Zhang,Xinxiang, et al.
Publicado: (2021)