Convolutional Neural Networks Refitting by Bootstrapping for Tracking People in a Mobile Robot
Convolutional Neural Networks are usually fitted with manually labelled data. The labelling process is very time-consuming since large datasets are required. The use of external hardware may help in some cases, but it also introduces noise to the labelled data. In this paper, we pose a new data labe...
Guardado en:
Autores principales: | Claudia Álvarez-Aparicio, Ángel Manuel Guerrero-Higueras, Luis V. Calderita, Francisco J. Rodríguez-Lera, Vicente Matellán, Camino Fernández-Llamas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a73eebb439e341b69b5b95c61ec8ebfc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Numerical bootstrap in quantum mechanics
por: Jyotirmoy Bhattacharya, et al.
Publicado: (2021) -
One-Pass In-Band Automatic Bootstrapping for OpenFlow Switches
por: Chien-Yung Li, et al.
Publicado: (2021) -
Service Robots: Trends and Technology
por: Juan Angel Gonzalez-Aguirre, et al.
Publicado: (2021) -
Influence of Drift on Robot Repeatability and Its Compensation
por: Michal Vocetka, et al.
Publicado: (2021) -
A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
por: Minghuan Hu, et al.
Publicado: (2021)