Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms
Abstract In this paper, a broadband and tunable radar cross section (RCS) reduction structure is proposed by using the hybrid physical mechanism that is based on high-order reflections and Salisbury-type absorption. Our design combines the high-index grating structure with a traditional Salisbury sc...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a745d9c7ffd645009371f0ac19f90b6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a745d9c7ffd645009371f0ac19f90b6a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a745d9c7ffd645009371f0ac19f90b6a2021-12-02T15:09:33ZBroadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms10.1038/s41598-019-45501-82045-2322https://doaj.org/article/a745d9c7ffd645009371f0ac19f90b6a2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-45501-8https://doaj.org/toc/2045-2322Abstract In this paper, a broadband and tunable radar cross section (RCS) reduction structure is proposed by using the hybrid physical mechanism that is based on high-order reflections and Salisbury-type absorption. Our design combines the high-index grating structure with a traditional Salisbury screen in which the lossy sheet is made of a graphene structure. When it is illuminated by a plane wave with normal incidence, the Salisbury screen can absorb the incoming wave, and the introducing high-index grating structure could further reduce the backward scattering wave by generating high-order reflection beams, which broadens the RCS reduction bandwidth. In addition, the RCS reduction level can be dynamically controlled by tuning the surface resistance of the graphene layer. Simulated results show that the proposed structure can realize tunable RCS reduction between 4.1 and 18 GHz under normal incidence with different graphene resistances. Experimental results are in accordance with those of the simulation results. In addition, the scattering field distributions and the plots of surface power loss density have been illustrated to analyze the RCS-reduction mechanism of our structure.Jiakun SongXiaoyu WuCheng HuangJianing YangChen JiChanglei ZhangXiangang LuoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-8 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jiakun Song Xiaoyu Wu Cheng Huang Jianing Yang Chen Ji Changlei Zhang Xiangang Luo Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
description |
Abstract In this paper, a broadband and tunable radar cross section (RCS) reduction structure is proposed by using the hybrid physical mechanism that is based on high-order reflections and Salisbury-type absorption. Our design combines the high-index grating structure with a traditional Salisbury screen in which the lossy sheet is made of a graphene structure. When it is illuminated by a plane wave with normal incidence, the Salisbury screen can absorb the incoming wave, and the introducing high-index grating structure could further reduce the backward scattering wave by generating high-order reflection beams, which broadens the RCS reduction bandwidth. In addition, the RCS reduction level can be dynamically controlled by tuning the surface resistance of the graphene layer. Simulated results show that the proposed structure can realize tunable RCS reduction between 4.1 and 18 GHz under normal incidence with different graphene resistances. Experimental results are in accordance with those of the simulation results. In addition, the scattering field distributions and the plots of surface power loss density have been illustrated to analyze the RCS-reduction mechanism of our structure. |
format |
article |
author |
Jiakun Song Xiaoyu Wu Cheng Huang Jianing Yang Chen Ji Changlei Zhang Xiangang Luo |
author_facet |
Jiakun Song Xiaoyu Wu Cheng Huang Jianing Yang Chen Ji Changlei Zhang Xiangang Luo |
author_sort |
Jiakun Song |
title |
Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
title_short |
Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
title_full |
Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
title_fullStr |
Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
title_full_unstemmed |
Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms |
title_sort |
broadband and tunable rcs reduction using high-order reflections and salisbury-type absorption mechanisms |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/a745d9c7ffd645009371f0ac19f90b6a |
work_keys_str_mv |
AT jiakunsong broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT xiaoyuwu broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT chenghuang broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT jianingyang broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT chenji broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT changleizhang broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms AT xiangangluo broadbandandtunablercsreductionusinghighorderreflectionsandsalisburytypeabsorptionmechanisms |
_version_ |
1718387831425990656 |