Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap

ABSTRACT Staphylococcus epidermidis and other coagulase-negative staphylococci (CoNS) that colonize skin are known to promote skin immunity and inhibit colonization of pathogens that cause skin and soft tissue infections, including Staphylococcus aureus. However, S. epidermidis adherence to corneocy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Paroma Roy, Alexander R. Horswill, Paul D. Fey
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/a7639c5ecae24c0b998eb452d0f159b1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7639c5ecae24c0b998eb452d0f159b1
record_format dspace
spelling oai:doaj.org-article:a7639c5ecae24c0b998eb452d0f159b12021-11-10T18:37:52ZGlycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap10.1128/mBio.02908-202150-7511https://doaj.org/article/a7639c5ecae24c0b998eb452d0f159b12021-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02908-20https://doaj.org/toc/2150-7511ABSTRACT Staphylococcus epidermidis and other coagulase-negative staphylococci (CoNS) that colonize skin are known to promote skin immunity and inhibit colonization of pathogens that cause skin and soft tissue infections, including Staphylococcus aureus. However, S. epidermidis adherence to corneocytes, the cells that constitute the uppermost layer of the skin epidermis, remains poorly understood. Our study documents that S. epidermidis corneocyte adherence is dependent upon the accumulation-associated protein (Aap). Aap is composed of two distinct A and B domains. The A domain is comprised of a repeat region and a conserved L-type lectin domain, whereas the fibrillar B domain, which is comprised of G5 and E repeats, is linked to the cell wall in a sortase-dependent manner. Our studies revealed that adherence to corneocytes is dependent upon the lectin subdomain within the A domain. However, significant adherence was only observed when the lectin domain was expressed with both the A repeat and the B domain, suggesting further interactions between these three domains. Our data also suggest that the A repeat domain is important for stability or expression of Aap. Deglycosylation treatment suggested that glycans expressed in the host stratum corneum serve as potential binding partners for Aap-mediated corneocyte adherence. Last, bioinformatic analyses of the predominant commensal species of CoNS identified open reading frames (ORFs) homologous to aap, thus suggesting that Aap orthologues containing lectin-like domains may provide the basis for staphylococcal colonization of skin. Corroborating these observations, adherence to corneocytes in an S. aureus mgrA mutant was dependent upon SasG, the Aap orthologue in S. aureus. IMPORTANCE Staphylococcus aureus is the most significant cause of skin and soft tissue infections yet it rarely colonizes the skin of healthy individuals. This is believed to be due, in part, to inhibition of colonization via toxic substances produced by normal skin flora, including by S. epidermidis. Furthermore, we surmise that S. aureus colonization inhibition may also be due to competition for binding sites on host corneocytes. To understand these potential interactions between S. aureus and S. epidermidis and, potentially, other coagulase-negative staphylococci, we must first understand how staphylococci adhere to corneocytes. This work documents that S. epidermidis adherence to corneocytes is dependent upon the fibrillar cell wall-associated protein Aap. Our work further documents that Aap binds to glycans exposed on the corneocyte surface, which are commonly exploited by bacteria to facilitate adherence to host cells. Furthermore, we find that Aap orthologues may be responsible for corneocyte adherence in other staphylococci, including in S. aureus.Paroma RoyAlexander R. HorswillPaul D. FeyAmerican Society for Microbiologyarticleaccumulation-associated proteinStaphylococcus aureusStaphylococcus epidermidisskin adherenceMicrobiologyQR1-502ENmBio, Vol 12, Iss 4 (2021)
institution DOAJ
collection DOAJ
language EN
topic accumulation-associated protein
Staphylococcus aureus
Staphylococcus epidermidis
skin adherence
Microbiology
QR1-502
spellingShingle accumulation-associated protein
Staphylococcus aureus
Staphylococcus epidermidis
skin adherence
Microbiology
QR1-502
Paroma Roy
Alexander R. Horswill
Paul D. Fey
Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
description ABSTRACT Staphylococcus epidermidis and other coagulase-negative staphylococci (CoNS) that colonize skin are known to promote skin immunity and inhibit colonization of pathogens that cause skin and soft tissue infections, including Staphylococcus aureus. However, S. epidermidis adherence to corneocytes, the cells that constitute the uppermost layer of the skin epidermis, remains poorly understood. Our study documents that S. epidermidis corneocyte adherence is dependent upon the accumulation-associated protein (Aap). Aap is composed of two distinct A and B domains. The A domain is comprised of a repeat region and a conserved L-type lectin domain, whereas the fibrillar B domain, which is comprised of G5 and E repeats, is linked to the cell wall in a sortase-dependent manner. Our studies revealed that adherence to corneocytes is dependent upon the lectin subdomain within the A domain. However, significant adherence was only observed when the lectin domain was expressed with both the A repeat and the B domain, suggesting further interactions between these three domains. Our data also suggest that the A repeat domain is important for stability or expression of Aap. Deglycosylation treatment suggested that glycans expressed in the host stratum corneum serve as potential binding partners for Aap-mediated corneocyte adherence. Last, bioinformatic analyses of the predominant commensal species of CoNS identified open reading frames (ORFs) homologous to aap, thus suggesting that Aap orthologues containing lectin-like domains may provide the basis for staphylococcal colonization of skin. Corroborating these observations, adherence to corneocytes in an S. aureus mgrA mutant was dependent upon SasG, the Aap orthologue in S. aureus. IMPORTANCE Staphylococcus aureus is the most significant cause of skin and soft tissue infections yet it rarely colonizes the skin of healthy individuals. This is believed to be due, in part, to inhibition of colonization via toxic substances produced by normal skin flora, including by S. epidermidis. Furthermore, we surmise that S. aureus colonization inhibition may also be due to competition for binding sites on host corneocytes. To understand these potential interactions between S. aureus and S. epidermidis and, potentially, other coagulase-negative staphylococci, we must first understand how staphylococci adhere to corneocytes. This work documents that S. epidermidis adherence to corneocytes is dependent upon the fibrillar cell wall-associated protein Aap. Our work further documents that Aap binds to glycans exposed on the corneocyte surface, which are commonly exploited by bacteria to facilitate adherence to host cells. Furthermore, we find that Aap orthologues may be responsible for corneocyte adherence in other staphylococci, including in S. aureus.
format article
author Paroma Roy
Alexander R. Horswill
Paul D. Fey
author_facet Paroma Roy
Alexander R. Horswill
Paul D. Fey
author_sort Paroma Roy
title Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
title_short Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
title_full Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
title_fullStr Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
title_full_unstemmed Glycan-Dependent Corneocyte Adherence of <named-content content-type="genus-species">Staphylococcus epidermidis</named-content> Mediated by the Lectin Subdomain of Aap
title_sort glycan-dependent corneocyte adherence of <named-content content-type="genus-species">staphylococcus epidermidis</named-content> mediated by the lectin subdomain of aap
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/a7639c5ecae24c0b998eb452d0f159b1
work_keys_str_mv AT paromaroy glycandependentcorneocyteadherenceofnamedcontentcontenttypegenusspeciesstaphylococcusepidermidisnamedcontentmediatedbythelectinsubdomainofaap
AT alexanderrhorswill glycandependentcorneocyteadherenceofnamedcontentcontenttypegenusspeciesstaphylococcusepidermidisnamedcontentmediatedbythelectinsubdomainofaap
AT pauldfey glycandependentcorneocyteadherenceofnamedcontentcontenttypegenusspeciesstaphylococcusepidermidisnamedcontentmediatedbythelectinsubdomainofaap
_version_ 1718439803968552960