Ensemble Models of Cutting-Edge Deep Neural Networks for Blood Glucose Prediction in Patients with Diabetes
This article proposes two ensemble neural network-based models for blood glucose prediction at three different prediction horizons—30, 60, and 120 min—and compares their performance with ten recently proposed neural networks. The twelve models’ performances are evaluated under the same OhioT1DM Data...
Guardado en:
Autores principales: | Félix Tena, Oscar Garnica, Juan Lanchares, Jose Ignacio Hidalgo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7667c8e64384beebd5f8806e8064a81 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting
por: Pedro M. R. Bento, et al.
Publicado: (2021) -
Deep Convolutional Neural Network Ensembles Using ECOC
por: Sara Atito Ali Ahmed, et al.
Publicado: (2021) -
Diagnosis of Alzheimer’s Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network
por: Peng Zhang, et al.
Publicado: (2021) -
IoT and Cloud Computing in Health-Care: A New Wearable Device and Cloud-Based Deep Learning Algorithm for Monitoring of Diabetes
por: Ahmed R. Nasser, et al.
Publicado: (2021) -
Ensemble of Template-Free and Template-Based Classifiers for Protein Secondary Structure Prediction
por: Gabriel Bianchin de Oliveira, et al.
Publicado: (2021)