Upper bounds for inverse domination in graphs

In any graph $G$, the domination number $\gamma(G)$ is at most the independence number $\alpha(G)$. The \emph{Inverse Domination Conjecture} says that, in any isolate-free $G$, there exists pair of vertex-disjoint dominating sets $D, D'$ with $|D|=\gamma(G)$ and $|D'| \leq \alpha(G)$. Here...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elliot Krop, Jessica McDonald, Gregory Puleo
Formato: article
Lenguaje:EN
Publicado: Georgia Southern University 2021
Materias:
Acceso en línea:https://doaj.org/article/a781f4f3bd8947448ccf77849beb240d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a781f4f3bd8947448ccf77849beb240d
record_format dspace
spelling oai:doaj.org-article:a781f4f3bd8947448ccf77849beb240d2021-11-16T16:59:16ZUpper bounds for inverse domination in graphs2470-985910.20429/tag.2021.080205https://doaj.org/article/a781f4f3bd8947448ccf77849beb240d2021-08-01T00:00:00Zhttps://digitalcommons.georgiasouthern.edu/tag/vol8/iss2/5https://doaj.org/toc/2470-9859In any graph $G$, the domination number $\gamma(G)$ is at most the independence number $\alpha(G)$. The \emph{Inverse Domination Conjecture} says that, in any isolate-free $G$, there exists pair of vertex-disjoint dominating sets $D, D'$ with $|D|=\gamma(G)$ and $|D'| \leq \alpha(G)$. Here we prove that this statement is true if the upper bound $\alpha(G)$ is replaced by $\frac{3}{2}\alpha(G) - 1$ (and $G$ is not a clique). We also prove that the conjecture holds whenever $\gamma(G)\leq 5$ or $|V(G)|\leq 16$.Elliot KropJessica McDonaldGregory PuleoGeorgia Southern Universityarticleinverse dominationkulli-sigarkantiMathematicsQA1-939ENTheory and Applications of Graphs, Vol 8, Iss 2 (2021)
institution DOAJ
collection DOAJ
language EN
topic inverse domination
kulli-sigarkanti
Mathematics
QA1-939
spellingShingle inverse domination
kulli-sigarkanti
Mathematics
QA1-939
Elliot Krop
Jessica McDonald
Gregory Puleo
Upper bounds for inverse domination in graphs
description In any graph $G$, the domination number $\gamma(G)$ is at most the independence number $\alpha(G)$. The \emph{Inverse Domination Conjecture} says that, in any isolate-free $G$, there exists pair of vertex-disjoint dominating sets $D, D'$ with $|D|=\gamma(G)$ and $|D'| \leq \alpha(G)$. Here we prove that this statement is true if the upper bound $\alpha(G)$ is replaced by $\frac{3}{2}\alpha(G) - 1$ (and $G$ is not a clique). We also prove that the conjecture holds whenever $\gamma(G)\leq 5$ or $|V(G)|\leq 16$.
format article
author Elliot Krop
Jessica McDonald
Gregory Puleo
author_facet Elliot Krop
Jessica McDonald
Gregory Puleo
author_sort Elliot Krop
title Upper bounds for inverse domination in graphs
title_short Upper bounds for inverse domination in graphs
title_full Upper bounds for inverse domination in graphs
title_fullStr Upper bounds for inverse domination in graphs
title_full_unstemmed Upper bounds for inverse domination in graphs
title_sort upper bounds for inverse domination in graphs
publisher Georgia Southern University
publishDate 2021
url https://doaj.org/article/a781f4f3bd8947448ccf77849beb240d
work_keys_str_mv AT elliotkrop upperboundsforinversedominationingraphs
AT jessicamcdonald upperboundsforinversedominationingraphs
AT gregorypuleo upperboundsforinversedominationingraphs
_version_ 1718426319783460864