Upper bounds for inverse domination in graphs
In any graph $G$, the domination number $\gamma(G)$ is at most the independence number $\alpha(G)$. The \emph{Inverse Domination Conjecture} says that, in any isolate-free $G$, there exists pair of vertex-disjoint dominating sets $D, D'$ with $|D|=\gamma(G)$ and $|D'| \leq \alpha(G)$. Here...
Guardado en:
Autores principales: | Elliot Krop, Jessica McDonald, Gregory Puleo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Georgia Southern University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a781f4f3bd8947448ccf77849beb240d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the Quasi-Total Roman Domination Number of Graphs
por: Abel Cabrera Martínez, et al.
Publicado: (2021) -
Independent point-set domination in line graphs
por: Purnima Gupta, et al.
Publicado: (2021) -
On a conjecture concerning total domination subdivision number in graphs
por: S. Kosari, et al.
Publicado: (2021) -
On the upper geodetic global domination number of a graph
por: Lenin Xaviour,X., et al.
Publicado: (2020) -
The harmonic index for trees with given domination number
por: Xipeng Hu, et al.
Publicado: (2021)