<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study
ABSTRACT Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the g...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a793c5931b3743058afca8d56f3a8e4d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a793c5931b3743058afca8d56f3a8e4d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a793c5931b3743058afca8d56f3a8e4d2021-11-15T15:45:55Z<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study10.1128/mBio.01819-142150-7511https://doaj.org/article/a793c5931b3743058afca8d56f3a8e4d2014-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01819-14https://doaj.org/toc/2150-7511ABSTRACT Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZAr strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZAr strains, (iii) mutations with an unclear role found in less than 70% of PZAr strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZAr; the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. IMPORTANCE Conventional phenotypic testing for pyrazinamide resistance in Mycobacterium tuberculosis is technically challenging and often unreliable. The development of a molecular assay for detecting pyrazinamide resistance would be a breakthrough, directly overcoming both the limitations of conventional testing and its related biosafety issues. Although the main mechanism of pyrazinamide resistance involves mutations inactivating the pncA enzyme, the highly diverse genetic variants scattered over the full length of the pncA gene and the lack of a reliable phenotypic gold standard hamper the development of molecular diagnostic assays. By analyzing a large number of strains collected worldwide, we have classified the different genetic variants based on their predictive value for resistance which should lead to more rapid diagnostic tests. This would assist clinicians in improving treatment regimens for patients.Paolo MiottoAndrea M. CabibbeSilke FeuerriegelNicola CasaliFrancis DrobniewskiYulia RodionovaDaiva BakonytePetras StakenasEdita PimkinaEwa Augustynowicz-KopećMassimo DeganoAlessandro AmbrosiSven HoffnerMikael MansjöJim WerngrenSabine Rüsch-GerdesStefan NiemannDaniela M. CirilloAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 5, Iss 5 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Paolo Miotto Andrea M. Cabibbe Silke Feuerriegel Nicola Casali Francis Drobniewski Yulia Rodionova Daiva Bakonyte Petras Stakenas Edita Pimkina Ewa Augustynowicz-Kopeć Massimo Degano Alessandro Ambrosi Sven Hoffner Mikael Mansjö Jim Werngren Sabine Rüsch-Gerdes Stefan Niemann Daniela M. Cirillo <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
description |
ABSTRACT Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZAr). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZAr strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZAr strains, (iii) mutations with an unclear role found in less than 70% of PZAr strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZAr; the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. IMPORTANCE Conventional phenotypic testing for pyrazinamide resistance in Mycobacterium tuberculosis is technically challenging and often unreliable. The development of a molecular assay for detecting pyrazinamide resistance would be a breakthrough, directly overcoming both the limitations of conventional testing and its related biosafety issues. Although the main mechanism of pyrazinamide resistance involves mutations inactivating the pncA enzyme, the highly diverse genetic variants scattered over the full length of the pncA gene and the lack of a reliable phenotypic gold standard hamper the development of molecular diagnostic assays. By analyzing a large number of strains collected worldwide, we have classified the different genetic variants based on their predictive value for resistance which should lead to more rapid diagnostic tests. This would assist clinicians in improving treatment regimens for patients. |
format |
article |
author |
Paolo Miotto Andrea M. Cabibbe Silke Feuerriegel Nicola Casali Francis Drobniewski Yulia Rodionova Daiva Bakonyte Petras Stakenas Edita Pimkina Ewa Augustynowicz-Kopeć Massimo Degano Alessandro Ambrosi Sven Hoffner Mikael Mansjö Jim Werngren Sabine Rüsch-Gerdes Stefan Niemann Daniela M. Cirillo |
author_facet |
Paolo Miotto Andrea M. Cabibbe Silke Feuerriegel Nicola Casali Francis Drobniewski Yulia Rodionova Daiva Bakonyte Petras Stakenas Edita Pimkina Ewa Augustynowicz-Kopeć Massimo Degano Alessandro Ambrosi Sven Hoffner Mikael Mansjö Jim Werngren Sabine Rüsch-Gerdes Stefan Niemann Daniela M. Cirillo |
author_sort |
Paolo Miotto |
title |
<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
title_short |
<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
title_full |
<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
title_fullStr |
<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
title_full_unstemmed |
<named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> Pyrazinamide Resistance Determinants: a Multicenter Study |
title_sort |
<named-content content-type="genus-species">mycobacterium tuberculosis</named-content> pyrazinamide resistance determinants: a multicenter study |
publisher |
American Society for Microbiology |
publishDate |
2014 |
url |
https://doaj.org/article/a793c5931b3743058afca8d56f3a8e4d |
work_keys_str_mv |
AT paolomiotto namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT andreamcabibbe namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT silkefeuerriegel namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT nicolacasali namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT francisdrobniewski namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT yuliarodionova namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT daivabakonyte namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT petrasstakenas namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT editapimkina namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT ewaaugustynowiczkopec namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT massimodegano namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT alessandroambrosi namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT svenhoffner namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT mikaelmansjo namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT jimwerngren namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT sabineruschgerdes namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT stefanniemann namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy AT danielamcirillo namedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontentpyrazinamideresistancedeterminantsamulticenterstudy |
_version_ |
1718427537509449728 |