Adaptive Localizing Region-Based Level Set for Segmentation of Maxillary Sinus Based on Convolutional Neural Networks
In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for improving performance of maxillary sinus segmentation. The healthy sinus without lesion inside is easy for conventional algorithms. However, in practice, most of the cases...
Guardado en:
Autores principales: | Xianglong Qi, Jie Zhong, Shengjia Cui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a797e0413dda4af3ad46ad964c2891ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Approach for Thoracic Syndrome Classification with Convolutional Neural Networks
por: Sapna Juneja, et al.
Publicado: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
Breast Cancer Diagnosis by Convolutional Neural Network and Advanced Thermal Exchange Optimization Algorithm
por: Xiuzhen Cai, et al.
Publicado: (2021) -
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Cheng-Hong Yang, et al.
Publicado: (2021) -
Cultural adaptation of internet- and mobile-based interventions for mental disorders: a systematic review
por: Kerstin Spanhel, et al.
Publicado: (2021)