FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS

Rapid urbanization in localities offers a lot of opportunities but also imposes a lot of challenges due to its direct relationship to population growth. This leads to an increase in the demand for essential goods and services such as food, energy, water among others. Hence, small-area population for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: L. Hilario, J. A. Duka, M. I. Mabalot, J. Domingo, K. A. Vergara, M. J. Villanueva-Jerez, K. A. Cabello, G. A. Rufino, C. J. Sarmiento
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
T
Acceso en línea:https://doaj.org/article/a7a1acf308ff4a7d8bd1510942a0f47d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7a1acf308ff4a7d8bd1510942a0f47d
record_format dspace
spelling oai:doaj.org-article:a7a1acf308ff4a7d8bd1510942a0f47d2021-11-19T01:36:30ZFORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS10.5194/isprs-archives-XLVI-4-W6-2021-185-20211682-17502194-9034https://doaj.org/article/a7a1acf308ff4a7d8bd1510942a0f47d2021-11-01T00:00:00Zhttps://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W6-2021/185/2021/isprs-archives-XLVI-4-W6-2021-185-2021.pdfhttps://doaj.org/toc/1682-1750https://doaj.org/toc/2194-9034Rapid urbanization in localities offers a lot of opportunities but also imposes a lot of challenges due to its direct relationship to population growth. This leads to an increase in the demand for essential goods and services such as food, energy, water among others. Hence, small-area population forecasts have long been an important element in urban and regional planning to aid in the decision-making processes in a locality. The promise of smart cities, through the use of advanced technologies, is to make cities livable and sustainable, preparing more opportunities and addressing challenges on urbanization. This study aims to forecast population distribution in Iloilo city by incorporating GIS techniques and highlighting the use of spatial autocorrelation models. The spatial interaction effects between neighboring barangays are taken into consideration to identify a set of factors affecting the population. The results identified a set of significant explanatory variables and whether it will result in an increase or decrease in population. The study also illustrates the resulting population forecast comparing it to the actual total population of the city.L. HilarioJ. A. DukaM. I. MabalotJ. DomingoK. A. VergaraM. J. Villanueva-JerezK. A. CabelloG. A. RufinoC. J. SarmientoCopernicus PublicationsarticleTechnologyTEngineering (General). Civil engineering (General)TA1-2040Applied optics. PhotonicsTA1501-1820ENThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLVI-4-W6-2021, Pp 185-192 (2021)
institution DOAJ
collection DOAJ
language EN
topic Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Applied optics. Photonics
TA1501-1820
spellingShingle Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Applied optics. Photonics
TA1501-1820
L. Hilario
J. A. Duka
M. I. Mabalot
J. Domingo
K. A. Vergara
M. J. Villanueva-Jerez
K. A. Cabello
G. A. Rufino
C. J. Sarmiento
FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
description Rapid urbanization in localities offers a lot of opportunities but also imposes a lot of challenges due to its direct relationship to population growth. This leads to an increase in the demand for essential goods and services such as food, energy, water among others. Hence, small-area population forecasts have long been an important element in urban and regional planning to aid in the decision-making processes in a locality. The promise of smart cities, through the use of advanced technologies, is to make cities livable and sustainable, preparing more opportunities and addressing challenges on urbanization. This study aims to forecast population distribution in Iloilo city by incorporating GIS techniques and highlighting the use of spatial autocorrelation models. The spatial interaction effects between neighboring barangays are taken into consideration to identify a set of factors affecting the population. The results identified a set of significant explanatory variables and whether it will result in an increase or decrease in population. The study also illustrates the resulting population forecast comparing it to the actual total population of the city.
format article
author L. Hilario
J. A. Duka
M. I. Mabalot
J. Domingo
K. A. Vergara
M. J. Villanueva-Jerez
K. A. Cabello
G. A. Rufino
C. J. Sarmiento
author_facet L. Hilario
J. A. Duka
M. I. Mabalot
J. Domingo
K. A. Vergara
M. J. Villanueva-Jerez
K. A. Cabello
G. A. Rufino
C. J. Sarmiento
author_sort L. Hilario
title FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
title_short FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
title_full FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
title_fullStr FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
title_full_unstemmed FORECASTING URBAN POPULATION DISTRIBUTION OF ILOILO CITY USING GIS AND SPATIAL AUTOCORRELATION MODELS
title_sort forecasting urban population distribution of iloilo city using gis and spatial autocorrelation models
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/a7a1acf308ff4a7d8bd1510942a0f47d
work_keys_str_mv AT lhilario forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT jaduka forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT mimabalot forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT jdomingo forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT kavergara forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT mjvillanuevajerez forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT kacabello forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT garufino forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
AT cjsarmiento forecastingurbanpopulationdistributionofiloilocityusinggisandspatialautocorrelationmodels
_version_ 1718420627141951488