Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals

The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ult...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel Temple Reeve, Alexis Belessiotis-Richards, Alejandro Strachan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7a32ddd40c447899a0e31cc10ab4e54
record_format dspace
spelling oai:doaj.org-article:a7a32ddd40c447899a0e31cc10ab4e542021-12-02T15:38:35ZHarnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals10.1038/s41467-017-01260-62041-1723https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e542017-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01260-6https://doaj.org/toc/2041-1723The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ultra-low stiffness.Samuel Temple ReeveAlexis Belessiotis-RichardsAlejandro StrachanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Samuel Temple Reeve
Alexis Belessiotis-Richards
Alejandro Strachan
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
description The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ultra-low stiffness.
format article
author Samuel Temple Reeve
Alexis Belessiotis-Richards
Alejandro Strachan
author_facet Samuel Temple Reeve
Alexis Belessiotis-Richards
Alejandro Strachan
author_sort Samuel Temple Reeve
title Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
title_short Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
title_full Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
title_fullStr Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
title_full_unstemmed Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
title_sort harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e54
work_keys_str_mv AT samueltemplereeve harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals
AT alexisbelessiotisrichards harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals
AT alejandrostrachan harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals
_version_ 1718386133131329536