Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals
The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ult...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a7a32ddd40c447899a0e31cc10ab4e54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a7a32ddd40c447899a0e31cc10ab4e542021-12-02T15:38:35ZHarnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals10.1038/s41467-017-01260-62041-1723https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e542017-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01260-6https://doaj.org/toc/2041-1723The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ultra-low stiffness.Samuel Temple ReeveAlexis Belessiotis-RichardsAlejandro StrachanNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Samuel Temple Reeve Alexis Belessiotis-Richards Alejandro Strachan Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
description |
The rule of mixtures usually causes composite properties to fall between the maximum and minimum of the parent phases. Here, the authors use large-scale molecular dynamics simulations to break that rule by stabilizing a negative stiffness state in fully dense nickel-aluminum nanowires to achieve ultra-low stiffness. |
format |
article |
author |
Samuel Temple Reeve Alexis Belessiotis-Richards Alejandro Strachan |
author_facet |
Samuel Temple Reeve Alexis Belessiotis-Richards Alejandro Strachan |
author_sort |
Samuel Temple Reeve |
title |
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
title_short |
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
title_full |
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
title_fullStr |
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
title_full_unstemmed |
Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
title_sort |
harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/a7a32ddd40c447899a0e31cc10ab4e54 |
work_keys_str_mv |
AT samueltemplereeve harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals AT alexisbelessiotisrichards harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals AT alejandrostrachan harnessingmechanicalinstabilitiesatthenanoscaletoachieveultralowstiffnessmetals |
_version_ |
1718386133131329536 |