Phybrata Sensors and Machine Learning for Enhanced Neurophysiological Diagnosis and Treatment
Concussion injuries remain a significant public health challenge. A significant unmet clinical need remains for tools that allow related physiological impairments and longer-term health risks to be identified earlier, better quantified, and more easily monitored over time. We address this challenge...
Guardado en:
Autores principales: | Alex J. Hope, Utkarsh Vashisth, Matthew J. Parker, Andreas B. Ralston, Joshua M. Roper, John D. Ralston |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7ac4205b47a4d319ee59edca5b02e47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Physiological Vibration Acceleration (Phybrata) Sensor Assessment of Multi-System Physiological Impairments and Sensory Reweighting Following Concussion
por: Ralston JD, et al.
Publicado: (2020) -
Monitoring of postural sway with a head-mounted wearable device: effects of gender, participant state, and concussion
por: Grafton ST, et al.
Publicado: (2019) -
Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review
por: Lorenzo Brognara, et al.
Publicado: (2021) -
Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers
por: Zhang Lei, et al.
Publicado: (2020) -
Journal of vestibular research
Publicado: (1990)