V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
We propose a computational workflow to design novel drug-like molecules by combining the global optimization of molecular properties and protein-ligand docking with machine learning. However, most existing methods depend heavily on experimental data, and many targets do not have sufficient data to t...
Guardado en:
Autores principales: | Jieun Choi, Juyong Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7adeb7431c840a1aff8c538162a106c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2
por: Jaka Fajar Fatriansyah, et al.
Publicado: (2022) -
SYNTHESIS, CHEMICAL IDENTIFICATION, DRUG RELEASE AND DOCKING STUDIES OF THE AMLODIPINE–CHITOSAN NANOBIOPOLYMER COMPOSITE
por: Ramirez-Tagle,Rodrigo, et al.
Publicado: (2021) -
DockStream: a docking wrapper to enhance de novo molecular design
por: Jeff Guo, et al.
Publicado: (2021) -
DFT and Molecular Docking Investigation of Potential Anticancer Properties of Some Flavonoids
por: EHIMEN ANNASTASIA ERAZUA, et al.
Publicado: (2019) -
COMPUTATIONAL INVESTIGATION OF METHYL α-D-GLUCOPYRANOSIDE DERIVATIVES AS INHIBITOR AGAINST BACTERIA, FUNGI AND COVID-19 (SARS-2)
por: Kawsar,Sarkar M. A., et al.
Publicado: (2021)