Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.

Beta regressions are commonly used with responses that assume values in the standard unit interval, such as rates, proportions and concentration indices. Hypothesis testing inferences on the model parameters are typically performed using the likelihood ratio test. It delivers accurate inferences whe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ana C Guedes, Francisco Cribari-Neto, Patrícia L Espinheira
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a7ba3e203e9e4cec88571deb92fac450
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7ba3e203e9e4cec88571deb92fac450
record_format dspace
spelling oai:doaj.org-article:a7ba3e203e9e4cec88571deb92fac4502021-12-02T20:09:54ZBartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.1932-620310.1371/journal.pone.0253349https://doaj.org/article/a7ba3e203e9e4cec88571deb92fac4502021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0253349https://doaj.org/toc/1932-6203Beta regressions are commonly used with responses that assume values in the standard unit interval, such as rates, proportions and concentration indices. Hypothesis testing inferences on the model parameters are typically performed using the likelihood ratio test. It delivers accurate inferences when the sample size is large, but can otherwise lead to unreliable conclusions. It is thus important to develop alternative tests with superior finite sample behavior. We derive the Bartlett correction to the likelihood ratio test under the more general formulation of the beta regression model, i.e. under varying precision. The model contains two submodels, one for the mean response and a separate one for the precision parameter. Our interest lies in performing testing inferences on the parameters that index both submodels. We use three Bartlett-corrected likelihood ratio test statistics that are expected to yield superior performance when the sample size is small. We present Monte Carlo simulation evidence on the finite sample behavior of the Bartlett-corrected tests relative to the standard likelihood ratio test and to two improved tests that are based on an alternative approach. The numerical evidence shows that one of the Bartlett-corrected typically delivers accurate inferences even when the sample is quite small. An empirical application related to behavioral biometrics is presented and discussed.Ana C GuedesFrancisco Cribari-NetoPatrícia L EspinheiraPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0253349 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ana C Guedes
Francisco Cribari-Neto
Patrícia L Espinheira
Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
description Beta regressions are commonly used with responses that assume values in the standard unit interval, such as rates, proportions and concentration indices. Hypothesis testing inferences on the model parameters are typically performed using the likelihood ratio test. It delivers accurate inferences when the sample size is large, but can otherwise lead to unreliable conclusions. It is thus important to develop alternative tests with superior finite sample behavior. We derive the Bartlett correction to the likelihood ratio test under the more general formulation of the beta regression model, i.e. under varying precision. The model contains two submodels, one for the mean response and a separate one for the precision parameter. Our interest lies in performing testing inferences on the parameters that index both submodels. We use three Bartlett-corrected likelihood ratio test statistics that are expected to yield superior performance when the sample size is small. We present Monte Carlo simulation evidence on the finite sample behavior of the Bartlett-corrected tests relative to the standard likelihood ratio test and to two improved tests that are based on an alternative approach. The numerical evidence shows that one of the Bartlett-corrected typically delivers accurate inferences even when the sample is quite small. An empirical application related to behavioral biometrics is presented and discussed.
format article
author Ana C Guedes
Francisco Cribari-Neto
Patrícia L Espinheira
author_facet Ana C Guedes
Francisco Cribari-Neto
Patrícia L Espinheira
author_sort Ana C Guedes
title Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
title_short Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
title_full Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
title_fullStr Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
title_full_unstemmed Bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
title_sort bartlett-corrected tests for varying precision beta regressions with application to environmental biometrics.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/a7ba3e203e9e4cec88571deb92fac450
work_keys_str_mv AT anacguedes bartlettcorrectedtestsforvaryingprecisionbetaregressionswithapplicationtoenvironmentalbiometrics
AT franciscocribarineto bartlettcorrectedtestsforvaryingprecisionbetaregressionswithapplicationtoenvironmentalbiometrics
AT patricialespinheira bartlettcorrectedtestsforvaryingprecisionbetaregressionswithapplicationtoenvironmentalbiometrics
_version_ 1718375083190255616