A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System

Abstract While a replicability crisis has shaken psychological sciences, the replicability of multivariate approaches for psychometric data factorization has received little attention. In particular, Exploratory Factor Analysis (EFA) is frequently promoted as the gold standard in psychological scien...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. A. Camilleri, S. B. Eickhoff, S. Weis, J. Chen, J. Amunts, A. Sotiras, S. Genon
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a7ce946822b14b29bfff2c410bd11684
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7ce946822b14b29bfff2c410bd11684
record_format dspace
spelling oai:doaj.org-article:a7ce946822b14b29bfff2c410bd116842021-12-02T16:45:40ZA machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System10.1038/s41598-021-96342-32045-2322https://doaj.org/article/a7ce946822b14b29bfff2c410bd116842021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96342-3https://doaj.org/toc/2045-2322Abstract While a replicability crisis has shaken psychological sciences, the replicability of multivariate approaches for psychometric data factorization has received little attention. In particular, Exploratory Factor Analysis (EFA) is frequently promoted as the gold standard in psychological sciences. However, the application of EFA to executive functioning, a core concept in psychology and cognitive neuroscience, has led to divergent conceptual models. This heterogeneity severely limits the generalizability and replicability of findings. To tackle this issue, in this study, we propose to capitalize on a machine learning approach, OPNMF (Orthonormal Projective Non-Negative Factorization), and leverage internal cross-validation to promote generalizability to an independent dataset. We examined its application on the scores of 334 adults at the Delis–Kaplan Executive Function System (D-KEFS), while comparing to standard EFA and Principal Component Analysis (PCA). We further evaluated the replicability of the derived factorization across specific gender and age subsamples. Overall, OPNMF and PCA both converge towards a two-factor model as the best data-fit model. The derived factorization suggests a division between low-level and high-level executive functioning measures, a model further supported in subsamples. In contrast, EFA, highlighted a five-factor model which reflects the segregation of the D-KEFS battery into its main tasks while still clustering higher-level tasks together. However, this model was poorly supported in the subsamples. Thus, the parsimonious two-factors model revealed by OPNMF encompasses the more complex factorization yielded by EFA while enjoying higher generalizability. Hence, OPNMF provides a conceptually meaningful, technically robust, and generalizable factorization for psychometric tools.J. A. CamilleriS. B. EickhoffS. WeisJ. ChenJ. AmuntsA. SotirasS. GenonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
J. A. Camilleri
S. B. Eickhoff
S. Weis
J. Chen
J. Amunts
A. Sotiras
S. Genon
A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
description Abstract While a replicability crisis has shaken psychological sciences, the replicability of multivariate approaches for psychometric data factorization has received little attention. In particular, Exploratory Factor Analysis (EFA) is frequently promoted as the gold standard in psychological sciences. However, the application of EFA to executive functioning, a core concept in psychology and cognitive neuroscience, has led to divergent conceptual models. This heterogeneity severely limits the generalizability and replicability of findings. To tackle this issue, in this study, we propose to capitalize on a machine learning approach, OPNMF (Orthonormal Projective Non-Negative Factorization), and leverage internal cross-validation to promote generalizability to an independent dataset. We examined its application on the scores of 334 adults at the Delis–Kaplan Executive Function System (D-KEFS), while comparing to standard EFA and Principal Component Analysis (PCA). We further evaluated the replicability of the derived factorization across specific gender and age subsamples. Overall, OPNMF and PCA both converge towards a two-factor model as the best data-fit model. The derived factorization suggests a division between low-level and high-level executive functioning measures, a model further supported in subsamples. In contrast, EFA, highlighted a five-factor model which reflects the segregation of the D-KEFS battery into its main tasks while still clustering higher-level tasks together. However, this model was poorly supported in the subsamples. Thus, the parsimonious two-factors model revealed by OPNMF encompasses the more complex factorization yielded by EFA while enjoying higher generalizability. Hence, OPNMF provides a conceptually meaningful, technically robust, and generalizable factorization for psychometric tools.
format article
author J. A. Camilleri
S. B. Eickhoff
S. Weis
J. Chen
J. Amunts
A. Sotiras
S. Genon
author_facet J. A. Camilleri
S. B. Eickhoff
S. Weis
J. Chen
J. Amunts
A. Sotiras
S. Genon
author_sort J. A. Camilleri
title A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
title_short A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
title_full A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
title_fullStr A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
title_full_unstemmed A machine learning approach for the factorization of psychometric data with application to the Delis Kaplan Executive Function System
title_sort machine learning approach for the factorization of psychometric data with application to the delis kaplan executive function system
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a7ce946822b14b29bfff2c410bd11684
work_keys_str_mv AT jacamilleri amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sbeickhoff amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sweis amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT jchen amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT jamunts amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT asotiras amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sgenon amachinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT jacamilleri machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sbeickhoff machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sweis machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT jchen machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT jamunts machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT asotiras machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
AT sgenon machinelearningapproachforthefactorizationofpsychometricdatawithapplicationtothedeliskaplanexecutivefunctionsystem
_version_ 1718383472207200256