Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes

Abstract Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ziteng Liu, Yinghuan Shi, Hongwei Chen, Tiexin Qin, Xuejie Zhou, Jun Huo, Hao Dong, Xiao Yang, Xiangdong Zhu, Xuening Chen, Li Zhang, Mingli Yang, Yang Gao, Jing Ma
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/a7d129f801914908a22f5751d20f450f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7d129f801914908a22f5751d20f450f
record_format dspace
spelling oai:doaj.org-article:a7d129f801914908a22f5751d20f450f2021-12-02T17:19:13ZMachine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes10.1038/s41524-021-00618-12057-3960https://doaj.org/article/a7d129f801914908a22f5751d20f450f2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00618-1https://doaj.org/toc/2057-3960Abstract Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.Ziteng LiuYinghuan ShiHongwei ChenTiexin QinXuejie ZhouJun HuoHao DongXiao YangXiangdong ZhuXuening ChenLi ZhangMingli YangYang GaoJing MaNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Ziteng Liu
Yinghuan Shi
Hongwei Chen
Tiexin Qin
Xuejie Zhou
Jun Huo
Hao Dong
Xiao Yang
Xiangdong Zhu
Xuening Chen
Li Zhang
Mingli Yang
Yang Gao
Jing Ma
Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
description Abstract Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.
format article
author Ziteng Liu
Yinghuan Shi
Hongwei Chen
Tiexin Qin
Xuejie Zhou
Jun Huo
Hao Dong
Xiao Yang
Xiangdong Zhu
Xuening Chen
Li Zhang
Mingli Yang
Yang Gao
Jing Ma
author_facet Ziteng Liu
Yinghuan Shi
Hongwei Chen
Tiexin Qin
Xuejie Zhou
Jun Huo
Hao Dong
Xiao Yang
Xiangdong Zhu
Xuening Chen
Li Zhang
Mingli Yang
Yang Gao
Jing Ma
author_sort Ziteng Liu
title Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
title_short Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
title_full Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
title_fullStr Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
title_full_unstemmed Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
title_sort machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a7d129f801914908a22f5751d20f450f
work_keys_str_mv AT zitengliu machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT yinghuanshi machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT hongweichen machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT tiexinqin machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT xuejiezhou machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT junhuo machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT haodong machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT xiaoyang machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT xiangdongzhu machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT xueningchen machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT lizhang machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT mingliyang machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT yanggao machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
AT jingma machinelearningonpropertiesofmultiscalemultisourcehydroxyapatitenanoparticlesdatasetswithdifferentmorphologiesandsizes
_version_ 1718381102709604352