Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
Abstract Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computa...
Guardado en:
Autores principales: | Ziteng Liu, Yinghuan Shi, Hongwei Chen, Tiexin Qin, Xuejie Zhou, Jun Huo, Hao Dong, Xiao Yang, Xiangdong Zhu, Xuening Chen, Li Zhang, Mingli Yang, Yang Gao, Jing Ma |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7d129f801914908a22f5751d20f450f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A multiscale polymerization framework towards network structure and fracture of double-network hydrogels
por: Mingzhen Zhang, et al.
Publicado: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet
por: Pierre-Paul De Breuck, et al.
Publicado: (2021) -
Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices
por: Kaiyun Chen, et al.
Publicado: (2021) -
Implicit Feedback Recommendation Method Based on User-Generated Content
por: Bing Fang, et al.
Publicado: (2021)