Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network
The hyperspectral image is a three-dimensional (3D) hypercube with spectral and spatial continuity. Traditional hyperspectral imaging (HSI) processing mainly focuses on spectral information. However, this paper proposed a new hybrid convolutional neural network (New-Hybrid-CNN) algorithm using HSI s...
Enregistré dans:
Auteurs principaux: | Qingshuang Mu, Zhilong Kang, Yanju Guo, Lei Chen, Shenyi Wang, Yuchen Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Taylor & Francis Group
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a7f8f9e11ffc4fdc8aa0dcc34806a2bc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
par: Minghua Zhang, et autres
Publié: (2021) -
Graph convolutional network method for small sample classification of hyperspectral images
par: ZUO Xibing, et autres
Publié: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
par: Mohsen Ansari, et autres
Publié: (2021) -
3D Octave and 2D Vanilla Mixed Convolutional Neural Network for Hyperspectral Image Classification with Limited Samples
par: Yuchao Feng, et autres
Publié: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
par: Tianyu Zhang, et autres
Publié: (2021)