Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.

<h4>Background</h4>Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xi-Song Ke, Yi Qu, Kari Rostad, Wen-Cheng Li, Biaoyang Lin, Ole Johan Halvorsen, Svein A Haukaas, Inge Jonassen, Kjell Petersen, Naomi Goldfinger, Varda Rotter, Lars A Akslen, Anne M Oyan, Karl-Henning Kalland
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a80563a97f6d4ed68528be64a4580324
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a80563a97f6d4ed68528be64a4580324
record_format dspace
spelling oai:doaj.org-article:a80563a97f6d4ed68528be64a45803242021-11-25T06:16:56ZGenome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.1932-620310.1371/journal.pone.0004687https://doaj.org/article/a80563a97f6d4ed68528be64a45803242009-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19262738/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown.<h4>Methodology/principal findings</h4>Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells.<h4>Conclusions/significance</h4>This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis.Xi-Song KeYi QuKari RostadWen-Cheng LiBiaoyang LinOle Johan HalvorsenSvein A HaukaasInge JonassenKjell PetersenNaomi GoldfingerVarda RotterLars A AkslenAnne M OyanKarl-Henning KallandPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 4, Iss 3, p e4687 (2009)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Xi-Song Ke
Yi Qu
Kari Rostad
Wen-Cheng Li
Biaoyang Lin
Ole Johan Halvorsen
Svein A Haukaas
Inge Jonassen
Kjell Petersen
Naomi Goldfinger
Varda Rotter
Lars A Akslen
Anne M Oyan
Karl-Henning Kalland
Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
description <h4>Background</h4>Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown.<h4>Methodology/principal findings</h4>Genome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells.<h4>Conclusions/significance</h4>This work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis.
format article
author Xi-Song Ke
Yi Qu
Kari Rostad
Wen-Cheng Li
Biaoyang Lin
Ole Johan Halvorsen
Svein A Haukaas
Inge Jonassen
Kjell Petersen
Naomi Goldfinger
Varda Rotter
Lars A Akslen
Anne M Oyan
Karl-Henning Kalland
author_facet Xi-Song Ke
Yi Qu
Kari Rostad
Wen-Cheng Li
Biaoyang Lin
Ole Johan Halvorsen
Svein A Haukaas
Inge Jonassen
Kjell Petersen
Naomi Goldfinger
Varda Rotter
Lars A Akslen
Anne M Oyan
Karl-Henning Kalland
author_sort Xi-Song Ke
title Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
title_short Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
title_full Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
title_fullStr Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
title_full_unstemmed Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
title_sort genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/a80563a97f6d4ed68528be64a4580324
work_keys_str_mv AT xisongke genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT yiqu genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT karirostad genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT wenchengli genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT biaoyanglin genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT olejohanhalvorsen genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT sveinahaukaas genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT ingejonassen genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT kjellpetersen genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT naomigoldfinger genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT vardarotter genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT larsaakslen genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT annemoyan genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
AT karlhenningkalland genomewideprofilingofhistoneh3lysine4andlysine27trimethylationrevealsanepigeneticsignatureinprostatecarcinogenesis
_version_ 1718414000964763648