Predicting and Interpreting Student Performance Using Ensemble Models and Shapley Additive Explanations
In several areas, including education, the use of machine learning, such as artificial neural networks, has resulted in significant improvements in predicting tasks. The opacity of these models is one of the problems with their use. Prediction models that may offer valuable insights while still bein...
Guardado en:
Autores principales: | Hayat Sahlaoui, El Arbi Abdellaoui Alaoui, Anand Nayyar, Said Agoujil, Mustafa Musa Jaber |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a80a718b693744d9973e56ed63b82f0f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System
por: Chanwoong Hwang, et al.
Publicado: (2021) -
Municipal Solid Waste Forecasting in China Based on Machine Learning Models
por: Liping Yang, et al.
Publicado: (2021) -
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
por: Stefano Frizzo Stefenon, et al.
Publicado: (2021) -
Using Shapley Values and Genetic Algorithms to Solve Multiobjective Optimization Problems
por: Hsien-Chung Wu
Publicado: (2021) -
Comparison and Explanation of Forecasting Algorithms for Energy Time Series
por: Yuyi Zhang, et al.
Publicado: (2021)