Predicting and Interpreting Student Performance Using Ensemble Models and Shapley Additive Explanations
In several areas, including education, the use of machine learning, such as artificial neural networks, has resulted in significant improvements in predicting tasks. The opacity of these models is one of the problems with their use. Prediction models that may offer valuable insights while still bein...
Enregistré dans:
Auteurs principaux: | Hayat Sahlaoui, El Arbi Abdellaoui Alaoui, Anand Nayyar, Said Agoujil, Mustafa Musa Jaber |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a80a718b693744d9973e56ed63b82f0f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System
par: Chanwoong Hwang, et autres
Publié: (2021) -
Municipal Solid Waste Forecasting in China Based on Machine Learning Models
par: Liping Yang, et autres
Publié: (2021) -
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
par: Stefano Frizzo Stefenon, et autres
Publié: (2021) -
Using Shapley Values and Genetic Algorithms to Solve Multiobjective Optimization Problems
par: Hsien-Chung Wu
Publié: (2021) -
Comparison and Explanation of Forecasting Algorithms for Energy Time Series
par: Yuyi Zhang, et autres
Publié: (2021)