Characterization of Conformational Ensembles of Protonated N-glycans in the Gas-Phase
Abstract Ion mobility mass spectrometry (IM-MS) is a technique capable of investigating structural changes of biomolecules based on their collision cross section (CCS). Recent advances in IM-MS allow us to separate carbohydrate isomers with subtle conformational differences, but the relationship bet...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a84010791c8642f5ab2dc1e8ef890152 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Ion mobility mass spectrometry (IM-MS) is a technique capable of investigating structural changes of biomolecules based on their collision cross section (CCS). Recent advances in IM-MS allow us to separate carbohydrate isomers with subtle conformational differences, but the relationship between CCS and atomic structure remains elusive. Here, we characterize conformational ensembles of gas-phase N-glycans under the electrospray ionization condition using molecular dynamics simulations with enhanced sampling. We show that the separation of CCSs between isomers reflects folding features of N-glycans, which are determined both by chemical compositions and protonation states. Providing a physicochemical basis of CCS for N-glycans helps not only to interpret IM-MS measurements but also to estimate CCSs of complex glycans. |
---|