Learning the best nanoscale heat engines through evolving network topology

While the thermodynamic power and efficiency of nanoscale heat engines in noninteracting regimes has been well-explored, revealing effect of many-body interactions remains a challenge. Here, the authors develop a reinforcement learning framework to achieve optimal power and efficiency in nanoengines...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yuto Ashida, Takahiro Sagawa
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/a84d6d528971441da8fc0e3f5f04e7fe
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:While the thermodynamic power and efficiency of nanoscale heat engines in noninteracting regimes has been well-explored, revealing effect of many-body interactions remains a challenge. Here, the authors develop a reinforcement learning framework to achieve optimal power and efficiency in nanoengines where two-body interactions among elementary components are nonnegligible.