Learning the best nanoscale heat engines through evolving network topology
While the thermodynamic power and efficiency of nanoscale heat engines in noninteracting regimes has been well-explored, revealing effect of many-body interactions remains a challenge. Here, the authors develop a reinforcement learning framework to achieve optimal power and efficiency in nanoengines...
Enregistré dans:
Auteurs principaux: | Yuto Ashida, Takahiro Sagawa |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a84d6d528971441da8fc0e3f5f04e7fe |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Unveiling quasiparticle dynamics of topological insulators through Bayesian modelling
par: Satoru Tokuda, et autres
Publié: (2021) -
Configurable pixelated skyrmions on nanoscale magnetic grids
par: Xichao Zhang, et autres
Publié: (2021) -
Topological electronics
par: Matthew J. Gilbert
Publié: (2021) -
Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers
par: Takafumi Ishibe, et autres
Publié: (2021) -
Topological gaps by twisting
par: Matheus I. N. Rosa, et autres
Publié: (2021)