Longer telomeres are associated with cancer risk in MMR-proficient hereditary non-polyposis colorectal cancer.

Aberrant telomere length measured in blood has been associated with increased risk of several cancer types. In the field of hereditary non-polyposis colorectal cancer (CRC), and more particularly in Lynch syndrome, caused by germline mutations in the mismatch repair (MMR) genes, we recently found th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nuria Seguí, Elisabet Guinó, Marta Pineda, Matilde Navarro, Fernando Bellido, Conxi Lázaro, Ignacio Blanco, Victor Moreno, Gabriel Capellá, Laura Valle
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a8515c67e76b44bb83aa678677b58009
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Aberrant telomere length measured in blood has been associated with increased risk of several cancer types. In the field of hereditary non-polyposis colorectal cancer (CRC), and more particularly in Lynch syndrome, caused by germline mutations in the mismatch repair (MMR) genes, we recently found that cancer-affected MMR gene mutation carriers had shorter telomeres and more pronounced shortening of telomere length with age than controls and unaffected MMR gene mutation carriers. Here we evaluate blood telomere length in MMR-proficient hereditary non-polyposis CRC, i.e. familial CRC type X (fCRC-X). A total of 57 cancer-affected and 57 cancer-free individuals from 34 Amsterdam-positive fCRC-X families were analyzed and compared to the data previously published on 144 cancer-affected and 100 cancer-free MMR gene mutation carriers, and 234 controls. Relative telomere length was measured using a monochrome multiplex quantitative PCR method, following strict measures to avoid sources of bias and adjusting by age. Despite the retrospective nature of our study, the results show that longer telomeres associate with cancer risk in fCRC-X, thus identifying different patterns of telomere length according to the status of the MMR system.