Optimal Design for Compliant Mechanism Flexure Hinges: Bridge-Type

Compliant mechanisms’ design aims to create a larger workspace and simple structural shapes because these mechanical systems usually have small dimensions, reduced friction, and less bending. From that request, we designed optimal bridge-type compliant mechanism flexure hinges with a high magnificat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chia-Nan Wang, Fu-Chiang Yang, Van Thanh Tien Nguyen, Quoc Manh Nguyen, Ngoc Thai Huynh, Thanh Thuong Huynh
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/a87ca0b28cc1402d98af46424a9e1484
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Compliant mechanisms’ design aims to create a larger workspace and simple structural shapes because these mechanical systems usually have small dimensions, reduced friction, and less bending. From that request, we designed optimal bridge-type compliant mechanism flexure hinges with a high magnification ratio, low stress by using a flexure joint, and especially no friction and no bending. This joint was designed with optimal dimensions for the studied mechanism by using the method of grey relational analysis (GRA), which is based on the Taguchi method (TM), and finite element analysis (FEA). Grey relational grade (GRG) has been estimated by an artificial neural network (ANN). The optimal values were in good agreement with the predicted value of the Taguchi method and regression analysis. The finite element analysis, signal-to-noise analysis, surface plot, and analysis of variance demonstrated that the design dimensions significantly affected the equivalent stress and displacement. The optimal values of displacement were also verified by the experiment. The outcomes were in good agreement with a deviation lower than 6%. Specifically, the displacement amplification ratio was obtained as 65.36 times compared with initial design.