Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment

Ji Wang,1,* Xia Wu,2,* Peng Shen,3 Jun Wang,4 Yidan Shen,1 Yan Shen,5 Thomas J Webster,6 Junjie Deng3 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 2Department of Clinical Pharmacology, The Second Affiliated Hospital of S...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wang J, Wu X, Shen P, Shen Y, Webster TJ, Deng J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/a88807553f984875858afed8a33ac8b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a88807553f984875858afed8a33ac8b4
record_format dspace
spelling oai:doaj.org-article:a88807553f984875858afed8a33ac8b42021-12-02T05:21:03ZApplications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment1178-2013https://doaj.org/article/a88807553f984875858afed8a33ac8b42020-03-01T00:00:00Zhttps://www.dovepress.com/applications-of-inorganic-nanomaterials-in-photothermal-therapy-based--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Ji Wang,1,* Xia Wu,2,* Peng Shen,3 Jun Wang,4 Yidan Shen,1 Yan Shen,5 Thomas J Webster,6 Junjie Deng3 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 2Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 3Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China; 4Department of General Surgery, The Fifth People’s Hospital of Wujiang, Suzhou, People’s Republic of China; 5Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA*These authors contributed equally to this workCorrespondence: Junjie DengWenzhou Institute, University of Chinese Academy of Sciences, No. 16 Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, People’s Republic of ChinaTel +86 577 88017548Fax +86 577 88017554Email j.deng@wibe.ac.cnThomas J WebsterDepartment of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USATel +1 617 373 6585Email th.webster@neu.eduBackground: Cancer is one of the major causes of death and is difficult to cure using existing clinical therapies. Clinical cancer treatments [such as surgery, chemotherapy (CHT), radiotherapy (RT) and immunotherapy (IT)] are widely used but they have limited therapeutic effects and unavoidable side effects. Recently, the development of novel nanomaterials offers a platform for combinational therapy (meaning a combination of two or more therapeutic agents) which is a promising approach for cancer therapy. Recent studies have demonstrated several types of nanomaterials suitable for photothermal therapy (PTT) based on a near-infrared (NIR) light-responsive system. PTT possesses favorable properties such as being low in cost, and having high temporospatial control with minimal invasiveness. However, short NIR light penetration depth limits its functions.Methods: In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy.Results: This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy.Conclusion: Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.Keywords: photothermal agents, hyperthermia, chemotherapy, radiotherapy, immunotherapy, photodynamic therapyWang JWu XShen PWang JShen YShen YWebster TJDeng JDove Medical Pressarticlephotothermal agentshyperthermiachemotherapyradiotherapyimmunotherapyphotodynamic therapyMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 15, Pp 1903-1914 (2020)
institution DOAJ
collection DOAJ
language EN
topic photothermal agents
hyperthermia
chemotherapy
radiotherapy
immunotherapy
photodynamic therapy
Medicine (General)
R5-920
spellingShingle photothermal agents
hyperthermia
chemotherapy
radiotherapy
immunotherapy
photodynamic therapy
Medicine (General)
R5-920
Wang J
Wu X
Shen P
Wang J
Shen Y
Shen Y
Webster TJ
Deng J
Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
description Ji Wang,1,* Xia Wu,2,* Peng Shen,3 Jun Wang,4 Yidan Shen,1 Yan Shen,5 Thomas J Webster,6 Junjie Deng3 1Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 2Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China; 3Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, People’s Republic of China; 4Department of General Surgery, The Fifth People’s Hospital of Wujiang, Suzhou, People’s Republic of China; 5Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA*These authors contributed equally to this workCorrespondence: Junjie DengWenzhou Institute, University of Chinese Academy of Sciences, No. 16 Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, People’s Republic of ChinaTel +86 577 88017548Fax +86 577 88017554Email j.deng@wibe.ac.cnThomas J WebsterDepartment of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USATel +1 617 373 6585Email th.webster@neu.eduBackground: Cancer is one of the major causes of death and is difficult to cure using existing clinical therapies. Clinical cancer treatments [such as surgery, chemotherapy (CHT), radiotherapy (RT) and immunotherapy (IT)] are widely used but they have limited therapeutic effects and unavoidable side effects. Recently, the development of novel nanomaterials offers a platform for combinational therapy (meaning a combination of two or more therapeutic agents) which is a promising approach for cancer therapy. Recent studies have demonstrated several types of nanomaterials suitable for photothermal therapy (PTT) based on a near-infrared (NIR) light-responsive system. PTT possesses favorable properties such as being low in cost, and having high temporospatial control with minimal invasiveness. However, short NIR light penetration depth limits its functions.Methods: In this review, due to their promise, we focus on inorganic nanomaterials [such as hollow mesoporous silica nanoparticles (HMSNs), tungsten sulfide quantum dots (WS2QDs), and gold nanorods (AuNRs)] combining PTT with CHT, RT or IT in one treatment, aiming to provide a comprehensive understanding of PTT-based combinational cancer therapy.Results: This review found much evidence for the use of inorganic nanoparticles for PTT-based combinational cancer therapy.Conclusion: Under synergistic effects, inorganic nanomaterial-based combinational treatments exhibit enhanced therapeutic effects compared to PTT, CHT, RT, IT or PDT alone and should be further investigated in the cancer field.Keywords: photothermal agents, hyperthermia, chemotherapy, radiotherapy, immunotherapy, photodynamic therapy
format article
author Wang J
Wu X
Shen P
Wang J
Shen Y
Shen Y
Webster TJ
Deng J
author_facet Wang J
Wu X
Shen P
Wang J
Shen Y
Shen Y
Webster TJ
Deng J
author_sort Wang J
title Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
title_short Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
title_full Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
title_fullStr Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
title_full_unstemmed Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment
title_sort applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/a88807553f984875858afed8a33ac8b4
work_keys_str_mv AT wangj applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT wux applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT shenp applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT wangj applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT sheny applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT sheny applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT webstertj applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
AT dengj applicationsofinorganicnanomaterialsinphotothermaltherapybasedoncombinationalcancertreatment
_version_ 1718400433256398848