Robust unsupervised deconvolution of linear motifs characterizes 68 protein modifications at proteome scale
Abstract The local sequence context is the most fundamental feature determining the post-translational modification (PTM) of proteins. Recent technological improvements allow for the detection of new and less prevalent modifications. We found that established state-of-the-art algorithms for the dete...
Guardado en:
Autores principales: | Theodore G. Smith, Anuli C. Uzozie, Siyuan Chen, Philipp F. Lange |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a88892814a84403ba85f784b07c59ce3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures
por: Konstantin Zaitsev, et al.
Publicado: (2019) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Jianing Xi, et al.
Publicado: (2021) -
Coupling proteomics and metabolomics for the unsupervised identification of protein-metabolite interactions in Chaetomium thermophilum.
por: Yuanyue Li, et al.
Publicado: (2021) -
Decentralized event‐triggered robust MPC for large‐scale networked Lipchitz non‐linear control systems
por: Saeid GHorbani, et al.
Publicado: (2021) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Tian Xie, et al.
Publicado: (2019)