Evolutionary computing and machine learning for discovering of low-energy defect configurations
Abstract Density functional theory (DFT) has become a standard tool for the study of point defects in materials. However, finding the most stable defective structures remains a very challenging task as it involves the solution of a multimodal optimization problem with a high-dimensional objective fu...
Enregistré dans:
Auteurs principaux: | Marco Arrigoni, Georg K. H. Madsen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a88de3e9469f4940a039fdef29558a9d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Computationally predicted energies and properties of defects in GaN
par: John L. Lyons, et autres
Publié: (2017) -
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
par: Conrad W. Rosenbrock, et autres
Publié: (2017) -
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
par: Namid R. Stillman, et autres
Publié: (2021) -
Machine learning and evolutionary prediction of superhard B-C-N compounds
par: Wei-Chih Chen, et autres
Publié: (2021) -
Decoding defect statistics from diffractograms via machine learning
par: Cody Kunka, et autres
Publié: (2021)