Evolutionary computing and machine learning for discovering of low-energy defect configurations
Abstract Density functional theory (DFT) has become a standard tool for the study of point defects in materials. However, finding the most stable defective structures remains a very challenging task as it involves the solution of a multimodal optimization problem with a high-dimensional objective fu...
Guardado en:
Autores principales: | Marco Arrigoni, Georg K. H. Madsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a88de3e9469f4940a039fdef29558a9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computationally predicted energies and properties of defects in GaN
por: John L. Lyons, et al.
Publicado: (2017) -
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
por: Conrad W. Rosenbrock, et al.
Publicado: (2017) -
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
por: Namid R. Stillman, et al.
Publicado: (2021) -
Machine learning and evolutionary prediction of superhard B-C-N compounds
por: Wei-Chih Chen, et al.
Publicado: (2021) -
Decoding defect statistics from diffractograms via machine learning
por: Cody Kunka, et al.
Publicado: (2021)