Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach
Abstract In recent years, new developments in controlling greenhouse gas emissions have been implemented to address the global climate conservation concern. Indeed, the earth's average temperature is being increased mainly due to burning fossil fuels, explicitly releasing high amounts of CO2 in...
Enregistré dans:
Auteurs principaux: | Majedeh Gheytanzadeh, Alireza Baghban, Sajjad Habibzadeh, Amin Esmaeili, Otman Abida, Ahmad Mohaddespour, Muhammad Tajammal Munir |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a88e0f0a55c4400bb4507ea11db6ad9d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling
par: Mohammad Hadi Dehghani, et autres
Publié: (2021) -
Preparation and CO2 Adsorption Performance of Porous Aluminum Fumarate MOFs Pellet
par: Lijiao Ma, et autres
Publié: (2021) -
Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study
par: Farhad Keivanimehr, et autres
Publié: (2021) -
On the evaluation of hydrogen evolution reaction performance of metal-nitrogen-doped carbon electrocatalysts using machine learning technique
par: Alireza Baghban, et autres
Publié: (2021) -
The pitfalls of using Gaussian Process Regression for normative modeling.
par: Bohan Xu, et autres
Publié: (2021)