Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach
Abstract In recent years, new developments in controlling greenhouse gas emissions have been implemented to address the global climate conservation concern. Indeed, the earth's average temperature is being increased mainly due to burning fossil fuels, explicitly releasing high amounts of CO2 in...
Guardado en:
Autores principales: | Majedeh Gheytanzadeh, Alireza Baghban, Sajjad Habibzadeh, Amin Esmaeili, Otman Abida, Ahmad Mohaddespour, Muhammad Tajammal Munir |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a88e0f0a55c4400bb4507ea11db6ad9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling
por: Mohammad Hadi Dehghani, et al.
Publicado: (2021) -
Preparation and CO2 Adsorption Performance of Porous Aluminum Fumarate MOFs Pellet
por: Lijiao Ma, et al.
Publicado: (2021) -
Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study
por: Farhad Keivanimehr, et al.
Publicado: (2021) -
On the evaluation of hydrogen evolution reaction performance of metal-nitrogen-doped carbon electrocatalysts using machine learning technique
por: Alireza Baghban, et al.
Publicado: (2021) -
The pitfalls of using Gaussian Process Regression for normative modeling.
por: Bohan Xu, et al.
Publicado: (2021)