Separate Detection of Stromal and Epithelial Corneal Edema on Optical Coherence Tomography Using a Deep Learning Pipeline and Transfer Learning

The accurate detection of corneal edema has become a topic of growing interest with the generalization of endothelial keratoplasty. Despite recent advances in deep learning for corneal edema detection, the problem of minimal edema remains challenging. Using transfer learning and a limited training s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pierre Zéboulon, Wassim Ghazal, Karen Bitton, Damien Gatinel
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/a8a1cbadf0da496da69e383adacd2d0e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The accurate detection of corneal edema has become a topic of growing interest with the generalization of endothelial keratoplasty. Despite recent advances in deep learning for corneal edema detection, the problem of minimal edema remains challenging. Using transfer learning and a limited training set of 11 images, we built a model to segment the corneal epithelium, which is part of a three-model pipeline to detect corneal edema. A second and a third model are used to detect edema on the stroma alone and on the epithelium. A validation set of 233 images from 30 patients consisting of three groups (Normal, Minimal Edema and important Edema) was used to compare the results of our new pipeline to our previous model. The mean edema fraction (EF), defined as the number of pixels detected as edema divided by the total number of pixels of the cornea, was calculated for each image. With our previous model, the mean EF was not statistically different between the Normal and Minimal Edema groups (<i>p</i> = 0.24). With the current pipeline, the mean EF was higher in the Minimal Edema group compared to the Normal group (<i>p</i> < 0.01). The described pipeline constitutes an adjustable framework for the detection of corneal edema based on optical coherence tomography and yields better performances in cases of minimal or localized edema.