The Ensembles of Machine Learning Methods for Survival Predicting after Kidney Transplantation
Machine learning is used to develop predictive models to diagnose different diseases, particularly kidney transplant survival prediction. The paper used the collected dataset of patients’ individual parameters to predict the critical risk factors associated with early graft rejection. Our study show...
Guardado en:
Autores principales: | Yaroslav Tolstyak, Rostyslav Zhuk, Igor Yakovlev, Nataliya Shakhovska, Michal Gregus ml, Valentyna Chopyak, Nataliia Melnykova |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8b1de2a13dc480cba6a74e66d0074a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
por: Nabeela Kausar, et al.
Publicado: (2021) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
por: Yangqianhui Zhang, et al.
Publicado: (2021) -
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
por: Khin Yadanar Win, et al.
Publicado: (2021) -
Dual Image-Based CNN Ensemble Model for Waste Classification in Reverse Vending Machine
por: Taeyoung Yoo, et al.
Publicado: (2021) -
Survival time and reliability assessment of bulk solids carriers in the mining and logistics industry
por: Saymon Ricardo de Oliveira Sousa, et al.
Publicado: (2021)