Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death
Abstract Background Tumor phototherapy especially photodynamic therapy (PDT) or photothermal therapy (PTT), has been considered as an attractive strategy to elicit significant immunogenic cell death (ICD) at an optimal tumor retention of PDT/PTT agents. Heptamethine cyanine dye (IR-780), a promising...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8cb5718fee647ec96683a2b7bb2120a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a8cb5718fee647ec96683a2b7bb2120a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a8cb5718fee647ec96683a2b7bb2120a2021-11-21T12:29:25ZDye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death10.1186/s12951-021-01109-71477-3155https://doaj.org/article/a8cb5718fee647ec96683a2b7bb2120a2021-11-01T00:00:00Zhttps://doi.org/10.1186/s12951-021-01109-7https://doaj.org/toc/1477-3155Abstract Background Tumor phototherapy especially photodynamic therapy (PDT) or photothermal therapy (PTT), has been considered as an attractive strategy to elicit significant immunogenic cell death (ICD) at an optimal tumor retention of PDT/PTT agents. Heptamethine cyanine dye (IR-780), a promising PDT/PTT agent, which can be used for near-infrared (NIR) fluorescence/photoacoustic (PA) imaging guided tumor phototherapy, however, the strong hydrophobicity, short circulation time, and potential toxicity in vivo hinder its biomedical applications. To address this challenge, we developed mesoporous polydopamine nanoparticles (MPDA) with excellent biocompatibility, PTT efficacy, and PA imaging ability, facilitating an efficient loading and protection of hydrophobic IR-780. Results The IR-780 loaded MPDA (IR-780@MPDA) exhibited high loading capacity of IR-780 (49.7 wt%), good physiological solubility and stability, and reduced toxicity. In vivo NIR fluorescence and PA imaging revealed high tumor accumulation of IR-780@MPDA. Furthermore, the combined PDT/PTT of IR-780@MPDA could induce ICD, triggered immunotherapeutic response to breast tumor by the activation of cytotoxic T cells, resulting in significant suppression of tumor growth in vivo. Conclusion This study demonstrated that the as-developed compact and biocompatible platform could induce combined PDT/PTT and accelerate immune activation via excellent tumor accumulation ability, offering multimodal tumor theranostics with negligible systemic toxicity. Graphical AbstractYing TianMuhammad Rizwan YounisYuxia TangXiang LiaoGang HeShouju WangZhaogang TengPeng HuangLongjiang ZhangGuangming LuBMCarticleMesoporous polydopamine nanoparticlesIR-780Photodynamic therapyPhotothermal therapyImmunogenic cell deathBiotechnologyTP248.13-248.65Medical technologyR855-855.5ENJournal of Nanobiotechnology, Vol 19, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mesoporous polydopamine nanoparticles IR-780 Photodynamic therapy Photothermal therapy Immunogenic cell death Biotechnology TP248.13-248.65 Medical technology R855-855.5 |
spellingShingle |
Mesoporous polydopamine nanoparticles IR-780 Photodynamic therapy Photothermal therapy Immunogenic cell death Biotechnology TP248.13-248.65 Medical technology R855-855.5 Ying Tian Muhammad Rizwan Younis Yuxia Tang Xiang Liao Gang He Shouju Wang Zhaogang Teng Peng Huang Longjiang Zhang Guangming Lu Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
description |
Abstract Background Tumor phototherapy especially photodynamic therapy (PDT) or photothermal therapy (PTT), has been considered as an attractive strategy to elicit significant immunogenic cell death (ICD) at an optimal tumor retention of PDT/PTT agents. Heptamethine cyanine dye (IR-780), a promising PDT/PTT agent, which can be used for near-infrared (NIR) fluorescence/photoacoustic (PA) imaging guided tumor phototherapy, however, the strong hydrophobicity, short circulation time, and potential toxicity in vivo hinder its biomedical applications. To address this challenge, we developed mesoporous polydopamine nanoparticles (MPDA) with excellent biocompatibility, PTT efficacy, and PA imaging ability, facilitating an efficient loading and protection of hydrophobic IR-780. Results The IR-780 loaded MPDA (IR-780@MPDA) exhibited high loading capacity of IR-780 (49.7 wt%), good physiological solubility and stability, and reduced toxicity. In vivo NIR fluorescence and PA imaging revealed high tumor accumulation of IR-780@MPDA. Furthermore, the combined PDT/PTT of IR-780@MPDA could induce ICD, triggered immunotherapeutic response to breast tumor by the activation of cytotoxic T cells, resulting in significant suppression of tumor growth in vivo. Conclusion This study demonstrated that the as-developed compact and biocompatible platform could induce combined PDT/PTT and accelerate immune activation via excellent tumor accumulation ability, offering multimodal tumor theranostics with negligible systemic toxicity. Graphical Abstract |
format |
article |
author |
Ying Tian Muhammad Rizwan Younis Yuxia Tang Xiang Liao Gang He Shouju Wang Zhaogang Teng Peng Huang Longjiang Zhang Guangming Lu |
author_facet |
Ying Tian Muhammad Rizwan Younis Yuxia Tang Xiang Liao Gang He Shouju Wang Zhaogang Teng Peng Huang Longjiang Zhang Guangming Lu |
author_sort |
Ying Tian |
title |
Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
title_short |
Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
title_full |
Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
title_fullStr |
Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
title_full_unstemmed |
Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
title_sort |
dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/a8cb5718fee647ec96683a2b7bb2120a |
work_keys_str_mv |
AT yingtian dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT muhammadrizwanyounis dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT yuxiatang dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT xiangliao dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT ganghe dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT shoujuwang dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT zhaogangteng dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT penghuang dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT longjiangzhang dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath AT guangminglu dyeloadedmesoporouspolydopaminenanoparticlesformultimodaltumortheranosticswithenhancedimmunogeniccelldeath |
_version_ |
1718418961995923456 |