Metaknowledge Extraction Based on Multi-Modal Documents
The triplet-based knowledge in large-scale knowledge bases is most likely lacking in structural logic and problematic of conducting knowledge hierarchy. In this paper, we introduce the concept of metaknowledge to knowledge engineering research for the purpose of structural knowledge construction. Th...
Guardado en:
Autores principales: | Shu-Kan Liu, Rui-Lin Xu, Bo-Ying Geng, Qiao Sun, Li Duan, Yi-Ming Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8ccb9c6d91348e882481d887a4bde28 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate Fine-Grained Layout Analysis for the Historical Tibetan Document Based on the Instance Segmentation
por: Penghai Zhao, et al.
Publicado: (2021) -
Deep Learning in Time-Frequency Domain for Document Layout Analysis
por: Felipe Grijalva, et al.
Publicado: (2021) -
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021) -
Development Strategy for Air–Ground Collaborative Multi-Modal Intelligent Robot System
por: Huang Qiang, Meng Fei, Yu Zhangguo, Lin Defu, Xu Bin, Duo Yingxian
Publicado: (2021) -
Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence
por: LI Xirong
Publicado: (2021)