Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.

Myelin-specific, pro-inflammatory TH17 cells are widely regarded as the drivers of experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple sclerosis (MS). The factors, responsible for the generation and maintenance of TH17 cells as well as their participation in the pathogenic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kerstin Berer, Marina Boziki, Gurumoorthy Krishnamoorthy
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a8cf50554cf14bb0b0ad99a01247c5a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a8cf50554cf14bb0b0ad99a01247c5a7
record_format dspace
spelling oai:doaj.org-article:a8cf50554cf14bb0b0ad99a01247c5a72021-11-18T08:33:58ZSelective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.1932-620310.1371/journal.pone.0087876https://doaj.org/article/a8cf50554cf14bb0b0ad99a01247c5a72014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24504092/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Myelin-specific, pro-inflammatory TH17 cells are widely regarded as the drivers of experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple sclerosis (MS). The factors, responsible for the generation and maintenance of TH17 cells as well as their participation in the pathogenic cascade leading to the demyelinating disease, have been studied extensively. However, how these harmful autoreactive cells are controlled in vivo remains unclear. By comparing TCR transgenic mice on a disease susceptible and a disease resistant genetic background, we show here that pathogenic TH17 cells are sequestered within the intestine of spontaneous EAE resistant B10.S mice. Disease resistant B10.S mice harbored higher frequencies of TH17 cells in the intestine compared to EAE susceptible SJL/J mice. Moreover, transferred TH17 cells selectively migrated to intestinal lymphoid organs of B10.S mice. The sequestration of TH17 cells in the gut was partially dependent on the gut homing receptor α4β7-mediated adhesion to the intestine. Administration of α4β7 blocking-antibodies increased the peripheral availability of TH17 cells, resulting in increased EAE severity after immunization in B10.S mice. Together, these results support the concept that the intestine is a check-point for controlling pathogenic, organ-specific T cells.Kerstin BererMarina BozikiGurumoorthy KrishnamoorthyPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 2, p e87876 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Kerstin Berer
Marina Boziki
Gurumoorthy Krishnamoorthy
Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
description Myelin-specific, pro-inflammatory TH17 cells are widely regarded as the drivers of experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple sclerosis (MS). The factors, responsible for the generation and maintenance of TH17 cells as well as their participation in the pathogenic cascade leading to the demyelinating disease, have been studied extensively. However, how these harmful autoreactive cells are controlled in vivo remains unclear. By comparing TCR transgenic mice on a disease susceptible and a disease resistant genetic background, we show here that pathogenic TH17 cells are sequestered within the intestine of spontaneous EAE resistant B10.S mice. Disease resistant B10.S mice harbored higher frequencies of TH17 cells in the intestine compared to EAE susceptible SJL/J mice. Moreover, transferred TH17 cells selectively migrated to intestinal lymphoid organs of B10.S mice. The sequestration of TH17 cells in the gut was partially dependent on the gut homing receptor α4β7-mediated adhesion to the intestine. Administration of α4β7 blocking-antibodies increased the peripheral availability of TH17 cells, resulting in increased EAE severity after immunization in B10.S mice. Together, these results support the concept that the intestine is a check-point for controlling pathogenic, organ-specific T cells.
format article
author Kerstin Berer
Marina Boziki
Gurumoorthy Krishnamoorthy
author_facet Kerstin Berer
Marina Boziki
Gurumoorthy Krishnamoorthy
author_sort Kerstin Berer
title Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
title_short Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
title_full Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
title_fullStr Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
title_full_unstemmed Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
title_sort selective accumulation of pro-inflammatory t cells in the intestine contributes to the resistance to autoimmune demyelinating disease.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/a8cf50554cf14bb0b0ad99a01247c5a7
work_keys_str_mv AT kerstinberer selectiveaccumulationofproinflammatorytcellsintheintestinecontributestotheresistancetoautoimmunedemyelinatingdisease
AT marinaboziki selectiveaccumulationofproinflammatorytcellsintheintestinecontributestotheresistancetoautoimmunedemyelinatingdisease
AT gurumoorthykrishnamoorthy selectiveaccumulationofproinflammatorytcellsintheintestinecontributestotheresistancetoautoimmunedemyelinatingdisease
_version_ 1718421640782544896