Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.

Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Uzma Younis, Ashfaq Ahmad Rahi, Subhan Danish, Muhammad Arif Ali, Niaz Ahmed, Rahul Datta, Shah Fahad, Jiri Holatko, Tereza Hammerschmiedt, Martin Brtnicky, Tayebeh Zarei, Alaa Baazeem, Ayman El Sabagh, Bernard R Glick
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a8d4446d83744028a1425d36805409cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a8d4446d83744028a1425d36805409cd
record_format dspace
spelling oai:doaj.org-article:a8d4446d83744028a1425d36805409cd2021-12-02T20:15:44ZFourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.1932-620310.1371/journal.pone.0253390https://doaj.org/article/a8d4446d83744028a1425d36805409cd2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0253390https://doaj.org/toc/1932-6203Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study's primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules' FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.Uzma YounisAshfaq Ahmad RahiSubhan DanishMuhammad Arif AliNiaz AhmedRahul DattaShah FahadJiri HolatkoTereza HammerschmiedtMartin BrtnickyTayebeh ZareiAlaa BaazeemAyman El SabaghBernard R GlickPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0253390 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Uzma Younis
Ashfaq Ahmad Rahi
Subhan Danish
Muhammad Arif Ali
Niaz Ahmed
Rahul Datta
Shah Fahad
Jiri Holatko
Tereza Hammerschmiedt
Martin Brtnicky
Tayebeh Zarei
Alaa Baazeem
Ayman El Sabagh
Bernard R Glick
Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
description Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study's primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules' FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.
format article
author Uzma Younis
Ashfaq Ahmad Rahi
Subhan Danish
Muhammad Arif Ali
Niaz Ahmed
Rahul Datta
Shah Fahad
Jiri Holatko
Tereza Hammerschmiedt
Martin Brtnicky
Tayebeh Zarei
Alaa Baazeem
Ayman El Sabagh
Bernard R Glick
author_facet Uzma Younis
Ashfaq Ahmad Rahi
Subhan Danish
Muhammad Arif Ali
Niaz Ahmed
Rahul Datta
Shah Fahad
Jiri Holatko
Tereza Hammerschmiedt
Martin Brtnicky
Tayebeh Zarei
Alaa Baazeem
Ayman El Sabagh
Bernard R Glick
author_sort Uzma Younis
title Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
title_short Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
title_full Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
title_fullStr Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
title_full_unstemmed Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil.
title_sort fourier transform infrared spectroscopy vibrational bands study of spinacia oleracea and trigonella corniculata under biochar amendment in naturally contaminated soil.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/a8d4446d83744028a1425d36805409cd
work_keys_str_mv AT uzmayounis fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT ashfaqahmadrahi fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT subhandanish fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT muhammadarifali fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT niazahmed fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT rahuldatta fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT shahfahad fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT jiriholatko fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT terezahammerschmiedt fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT martinbrtnicky fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT tayebehzarei fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT alaabaazeem fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT aymanelsabagh fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
AT bernardrglick fouriertransforminfraredspectroscopyvibrationalbandsstudyofspinaciaoleraceaandtrigonellacorniculataunderbiocharamendmentinnaturallycontaminatedsoil
_version_ 1718374545573806080