Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are c...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8dec49721374734b691a88c51d2211c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a8dec49721374734b691a88c51d2211c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a8dec49721374734b691a88c51d2211c2021-12-02T13:30:18ZRetrieving the structure of probabilistic sequences of auditory stimuli from EEG data10.1038/s41598-021-83119-x2045-2322https://doaj.org/article/a8dec49721374734b691a88c51d2211c2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83119-xhttps://doaj.org/toc/2045-2322Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.Noslen HernándezAline DuarteGuilherme OstRicardo FraimanAntonio GalvesClaudia D. VargasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Noslen Hernández Aline Duarte Guilherme Ost Ricardo Fraiman Antonio Galves Claudia D. Vargas Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
description |
Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture. |
format |
article |
author |
Noslen Hernández Aline Duarte Guilherme Ost Ricardo Fraiman Antonio Galves Claudia D. Vargas |
author_facet |
Noslen Hernández Aline Duarte Guilherme Ost Ricardo Fraiman Antonio Galves Claudia D. Vargas |
author_sort |
Noslen Hernández |
title |
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
title_short |
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
title_full |
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
title_fullStr |
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
title_full_unstemmed |
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data |
title_sort |
retrieving the structure of probabilistic sequences of auditory stimuli from eeg data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a8dec49721374734b691a88c51d2211c |
work_keys_str_mv |
AT noslenhernandez retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata AT alineduarte retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata AT guilhermeost retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata AT ricardofraiman retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata AT antoniogalves retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata AT claudiadvargas retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata |
_version_ |
1718392933814632448 |