Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data

Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noslen Hernández, Aline Duarte, Guilherme Ost, Ricardo Fraiman, Antonio Galves, Claudia D. Vargas
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a8dec49721374734b691a88c51d2211c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a8dec49721374734b691a88c51d2211c
record_format dspace
spelling oai:doaj.org-article:a8dec49721374734b691a88c51d2211c2021-12-02T13:30:18ZRetrieving the structure of probabilistic sequences of auditory stimuli from EEG data10.1038/s41598-021-83119-x2045-2322https://doaj.org/article/a8dec49721374734b691a88c51d2211c2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83119-xhttps://doaj.org/toc/2045-2322Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.Noslen HernándezAline DuarteGuilherme OstRicardo FraimanAntonio GalvesClaudia D. VargasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Noslen Hernández
Aline Duarte
Guilherme Ost
Ricardo Fraiman
Antonio Galves
Claudia D. Vargas
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
description Abstract Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.
format article
author Noslen Hernández
Aline Duarte
Guilherme Ost
Ricardo Fraiman
Antonio Galves
Claudia D. Vargas
author_facet Noslen Hernández
Aline Duarte
Guilherme Ost
Ricardo Fraiman
Antonio Galves
Claudia D. Vargas
author_sort Noslen Hernández
title Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
title_short Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
title_full Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
title_fullStr Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
title_full_unstemmed Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
title_sort retrieving the structure of probabilistic sequences of auditory stimuli from eeg data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a8dec49721374734b691a88c51d2211c
work_keys_str_mv AT noslenhernandez retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
AT alineduarte retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
AT guilhermeost retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
AT ricardofraiman retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
AT antoniogalves retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
AT claudiadvargas retrievingthestructureofprobabilisticsequencesofauditorystimulifromeegdata
_version_ 1718392933814632448