Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning
Abstract To harness the full potential of the ultrafast electron diffraction (UED) and microscopy (UEM), we must know accurately the electron beam properties, such as emittance, energy spread, spatial-pointing jitter, and shot-to-shot energy fluctuation. Owing to the inherent fluctuations in UED/UEM...
Enregistré dans:
Auteurs principaux: | Zhe Zhang, Xi Yang, Xiaobiao Huang, Junjie Li, Timur Shaftan, Victor Smaluk, Minghao Song, Weishi Wan, Lijun Wu, Yimei Zhu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a8e49568fa624eb3aa76fcf10c35690d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Non-diffracting multi-electron vortex beams balancing their electron–electron interactions
par: Maor Mutzafi, et autres
Publié: (2017) -
Machine learning accurate exchange and correlation functionals of the electronic density
par: Sebastian Dick, et autres
Publié: (2020) -
Scalable and accurate deep learning with electronic health records
par: Alvin Rajkomar, et autres
Publié: (2018) -
Simultaneous correction of high order geometrical driving terms with octupoles in synchrotron light sources
par: Fabien Plassard, et autres
Publié: (2021) -
Dissipation of electron-beam-driven plasma wakes
par: Rafal Zgadzaj, et autres
Publié: (2020)