Quasi-stability and continuity of attractors for nonlinear system of wave equations

In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by est...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Freitas M. M., Dos Santos M. J., Ramos A. J. A., Vinhote M. S., Santos M. L.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.