Quasi-stability and continuity of attractors for nonlinear system of wave equations
In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by est...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a8f4e09a2a5645e09192cf8ef15d5cf7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a8f4e09a2a5645e09192cf8ef15d5cf72021-12-05T14:10:56ZQuasi-stability and continuity of attractors for nonlinear system of wave equations2353-062610.1515/msds-2020-0125https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf72021-04-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0125https://doaj.org/toc/2353-0626In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.Freitas M. M.Dos Santos M. J.Ramos A. J. A.Vinhote M. S.Santos M. L.De Gruyterarticlewave equationsquasi-stable systemsglobal attractorexponential attractorcontinuity of attractors35b4035b4135l0535l75MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 27-45 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
wave equations quasi-stable systems global attractor exponential attractor continuity of attractors 35b40 35b41 35l05 35l75 Mathematics QA1-939 |
spellingShingle |
wave equations quasi-stable systems global attractor exponential attractor continuity of attractors 35b40 35b41 35l05 35l75 Mathematics QA1-939 Freitas M. M. Dos Santos M. J. Ramos A. J. A. Vinhote M. S. Santos M. L. Quasi-stability and continuity of attractors for nonlinear system of wave equations |
description |
In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations. |
format |
article |
author |
Freitas M. M. Dos Santos M. J. Ramos A. J. A. Vinhote M. S. Santos M. L. |
author_facet |
Freitas M. M. Dos Santos M. J. Ramos A. J. A. Vinhote M. S. Santos M. L. |
author_sort |
Freitas M. M. |
title |
Quasi-stability and continuity of attractors for nonlinear system of wave equations |
title_short |
Quasi-stability and continuity of attractors for nonlinear system of wave equations |
title_full |
Quasi-stability and continuity of attractors for nonlinear system of wave equations |
title_fullStr |
Quasi-stability and continuity of attractors for nonlinear system of wave equations |
title_full_unstemmed |
Quasi-stability and continuity of attractors for nonlinear system of wave equations |
title_sort |
quasi-stability and continuity of attractors for nonlinear system of wave equations |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf7 |
work_keys_str_mv |
AT freitasmm quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations AT dossantosmj quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations AT ramosaja quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations AT vinhotems quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations AT santosml quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations |
_version_ |
1718371560859893760 |