Quasi-stability and continuity of attractors for nonlinear system of wave equations

In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by est...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Freitas M. M., Dos Santos M. J., Ramos A. J. A., Vinhote M. S., Santos M. L.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a8f4e09a2a5645e09192cf8ef15d5cf7
record_format dspace
spelling oai:doaj.org-article:a8f4e09a2a5645e09192cf8ef15d5cf72021-12-05T14:10:56ZQuasi-stability and continuity of attractors for nonlinear system of wave equations2353-062610.1515/msds-2020-0125https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf72021-04-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0125https://doaj.org/toc/2353-0626In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.Freitas M. M.Dos Santos M. J.Ramos A. J. A.Vinhote M. S.Santos M. L.De Gruyterarticlewave equationsquasi-stable systemsglobal attractorexponential attractorcontinuity of attractors35b4035b4135l0535l75MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 27-45 (2021)
institution DOAJ
collection DOAJ
language EN
topic wave equations
quasi-stable systems
global attractor
exponential attractor
continuity of attractors
35b40
35b41
35l05
35l75
Mathematics
QA1-939
spellingShingle wave equations
quasi-stable systems
global attractor
exponential attractor
continuity of attractors
35b40
35b41
35l05
35l75
Mathematics
QA1-939
Freitas M. M.
Dos Santos M. J.
Ramos A. J. A.
Vinhote M. S.
Santos M. L.
Quasi-stability and continuity of attractors for nonlinear system of wave equations
description In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.
format article
author Freitas M. M.
Dos Santos M. J.
Ramos A. J. A.
Vinhote M. S.
Santos M. L.
author_facet Freitas M. M.
Dos Santos M. J.
Ramos A. J. A.
Vinhote M. S.
Santos M. L.
author_sort Freitas M. M.
title Quasi-stability and continuity of attractors for nonlinear system of wave equations
title_short Quasi-stability and continuity of attractors for nonlinear system of wave equations
title_full Quasi-stability and continuity of attractors for nonlinear system of wave equations
title_fullStr Quasi-stability and continuity of attractors for nonlinear system of wave equations
title_full_unstemmed Quasi-stability and continuity of attractors for nonlinear system of wave equations
title_sort quasi-stability and continuity of attractors for nonlinear system of wave equations
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/a8f4e09a2a5645e09192cf8ef15d5cf7
work_keys_str_mv AT freitasmm quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations
AT dossantosmj quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations
AT ramosaja quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations
AT vinhotems quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations
AT santosml quasistabilityandcontinuityofattractorsfornonlinearsystemofwaveequations
_version_ 1718371560859893760