Artificial intelligence-based detection of epimacular membrane from color fundus photographs
Abstract Epiretinal membrane (ERM) is a common ophthalmological disorder of high prevalence. Its symptoms include metamorphopsia, blurred vision, and decreased visual acuity. Early diagnosis and timely treatment of ERM is crucial to preventing vision loss. Although optical coherence tomography (OCT)...
Enregistré dans:
Auteurs principaux: | Enhua Shao, Congxin Liu, Lei Wang, Dan Song, Libin Guo, Xuan Yao, Jianhao Xiong, Bin Wang, Yuntao Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a8fcc22dff5141bcb83ba249a08a3810 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Procedures of Establishing a Well-annotated Database of Color Fundus Photography of Diabetic Retinopathy for Artificial Intelligence Research
par: YU Weihong, et autres
Publié: (2021) -
Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning
par: Diego R. Cervera, et autres
Publié: (2021) -
Epimacular brachytherapy for wet AMD: current perspectives
par: Casaroli-Marano RP, et autres
Publié: (2014) -
Predicting sex from retinal fundus photographs using automated deep learning
par: Edward Korot, et autres
Publié: (2021) -
Digital image processing software for diagnosing diabetic retinopathy from fundus photograph
par: Ratanapakorn T, et autres
Publié: (2019)