Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance

The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Serantes, Daniel Baldomir
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a8fd48f9fed24b9e96fa4a83a275f7d6
record_format dspace
spelling oai:doaj.org-article:a8fd48f9fed24b9e96fa4a83a275f7d62021-11-25T18:29:48ZNanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance10.3390/nano111127862079-4991https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d62021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2786https://doaj.org/toc/2079-4991The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate internally and thus undermine the agglomeration process. Based on the comparison between the involved timescales, we study in this work how the threshold size for magnetic agglomeration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula>) varies depending on the <i>K</i> value. Our results suggest that small variations in <i>K</i>-due to, e.g., shape contribution, might shift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula> by a few nm. A comparison with the usual <i>superparamagnetism</i> estimation is provided, as well as with the energy competition approach. In addition, based on the key role of the anisotropy in the hyperthermia performance, we also analyse the associated heating capability, as non-agglomerated particles would be of high interest for the application.David SerantesDaniel BaldomirMDPI AGarticlemagnetic nanoparticlesmagnetic agglomerationmagnetic hyperthermiaChemistryQD1-999ENNanomaterials, Vol 11, Iss 2786, p 2786 (2021)
institution DOAJ
collection DOAJ
language EN
topic magnetic nanoparticles
magnetic agglomeration
magnetic hyperthermia
Chemistry
QD1-999
spellingShingle magnetic nanoparticles
magnetic agglomeration
magnetic hyperthermia
Chemistry
QD1-999
David Serantes
Daniel Baldomir
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
description The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate internally and thus undermine the agglomeration process. Based on the comparison between the involved timescales, we study in this work how the threshold size for magnetic agglomeration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula>) varies depending on the <i>K</i> value. Our results suggest that small variations in <i>K</i>-due to, e.g., shape contribution, might shift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula> by a few nm. A comparison with the usual <i>superparamagnetism</i> estimation is provided, as well as with the energy competition approach. In addition, based on the key role of the anisotropy in the hyperthermia performance, we also analyse the associated heating capability, as non-agglomerated particles would be of high interest for the application.
format article
author David Serantes
Daniel Baldomir
author_facet David Serantes
Daniel Baldomir
author_sort David Serantes
title Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
title_short Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
title_full Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
title_fullStr Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
title_full_unstemmed Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
title_sort nanoparticle size threshold for magnetic agglomeration and associated hyperthermia performance
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d6
work_keys_str_mv AT davidserantes nanoparticlesizethresholdformagneticagglomerationandassociatedhyperthermiaperformance
AT danielbaldomir nanoparticlesizethresholdformagneticagglomerationandassociatedhyperthermiaperformance
_version_ 1718411097002737664