Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance
The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a8fd48f9fed24b9e96fa4a83a275f7d6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a8fd48f9fed24b9e96fa4a83a275f7d62021-11-25T18:29:48ZNanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance10.3390/nano111127862079-4991https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d62021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2786https://doaj.org/toc/2079-4991The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate internally and thus undermine the agglomeration process. Based on the comparison between the involved timescales, we study in this work how the threshold size for magnetic agglomeration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula>) varies depending on the <i>K</i> value. Our results suggest that small variations in <i>K</i>-due to, e.g., shape contribution, might shift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula> by a few nm. A comparison with the usual <i>superparamagnetism</i> estimation is provided, as well as with the energy competition approach. In addition, based on the key role of the anisotropy in the hyperthermia performance, we also analyse the associated heating capability, as non-agglomerated particles would be of high interest for the application.David SerantesDaniel BaldomirMDPI AGarticlemagnetic nanoparticlesmagnetic agglomerationmagnetic hyperthermiaChemistryQD1-999ENNanomaterials, Vol 11, Iss 2786, p 2786 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
magnetic nanoparticles magnetic agglomeration magnetic hyperthermia Chemistry QD1-999 |
spellingShingle |
magnetic nanoparticles magnetic agglomeration magnetic hyperthermia Chemistry QD1-999 David Serantes Daniel Baldomir Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
description |
The likelihood of magnetic nanoparticles to agglomerate is usually estimated through the ratio between magnetic dipole-dipole and thermal energies, thus neglecting the fact that, depending on the magnitude of the magnetic anisotropy constant (<i>K</i>), the particle moment may fluctuate internally and thus undermine the agglomeration process. Based on the comparison between the involved timescales, we study in this work how the threshold size for magnetic agglomeration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula>) varies depending on the <i>K</i> value. Our results suggest that small variations in <i>K</i>-due to, e.g., shape contribution, might shift <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mrow><mi>a</mi><mi>g</mi><mi>g</mi><mi>l</mi></mrow></msub></semantics></math></inline-formula> by a few nm. A comparison with the usual <i>superparamagnetism</i> estimation is provided, as well as with the energy competition approach. In addition, based on the key role of the anisotropy in the hyperthermia performance, we also analyse the associated heating capability, as non-agglomerated particles would be of high interest for the application. |
format |
article |
author |
David Serantes Daniel Baldomir |
author_facet |
David Serantes Daniel Baldomir |
author_sort |
David Serantes |
title |
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
title_short |
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
title_full |
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
title_fullStr |
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
title_full_unstemmed |
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance |
title_sort |
nanoparticle size threshold for magnetic agglomeration and associated hyperthermia performance |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/a8fd48f9fed24b9e96fa4a83a275f7d6 |
work_keys_str_mv |
AT davidserantes nanoparticlesizethresholdformagneticagglomerationandassociatedhyperthermiaperformance AT danielbaldomir nanoparticlesizethresholdformagneticagglomerationandassociatedhyperthermiaperformance |
_version_ |
1718411097002737664 |