Recognition of tenogenic differentiation using convolutional neural network
Methodologies to assess stem cell differentiation in the culturing state are needed for regenerative medicine and tissue engineering techniques. In recent years, convolutional neural networks (CNNs), a class of deep neural networks, have made impressive advancements in image-based classification, re...
Enregistré dans:
Auteurs principaux: | Dursun Gözde, Balkrishna Tandale Saurabh, Eschweiler Jörg, Tohidnezhad Mersedeh, Markert Bernd, Stoffel Marcus |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a91a5e65f8314e5ca36f9925f0696e7a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Olfactory Epithelium as an Infinitive Source of Neural Stem Cells for Derivation of Inner Ear Hair Cells
par: Bahmani,Tahere, et autres
Publié: (2017) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
par: Leiyu Chen, et autres
Publié: (2021) -
Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro
par: Zhou KL, et autres
Publié: (2018) -
A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus
par: Rodríguez,Esteban M, et autres
Publié: (2012) -
A Step-by-Step Refined Strategy for Highly Efficient Generation of Neural Progenitors and Motor Neurons from Human Pluripotent Stem Cells
par: Jie Ren, et autres
Publié: (2021)