Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there ex...
Guardado en:
Autores principales: | Lars Buesing, Johannes Bill, Bernhard Nessler, Wolfgang Maass |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a94c33180bfb45c2b702bdc4888cd9e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
por: Bernhard Nessler, et al.
Publicado: (2013) -
A solution to the learning dilemma for recurrent networks of spiking neurons
por: Guillaume Bellec, et al.
Publicado: (2020) -
Emergent oscillations in networks of stochastic spiking neurons.
por: Edward Wallace, et al.
Publicado: (2011) -
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
por: Ahmed Shaban, et al.
Publicado: (2021) -
Hardware Architecture of Stochastic Computing Neural Network
por: CHEN Yuhao, SONG Yinjie, ZHU Yanan, GAO Yunfei, LI Hongge+
Publicado: (2021)