Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group

In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group  of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group   is square-int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Edi Kurniadi, Nurul Gusriani, Betty Subartini
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2020
Materias:
Acceso en línea:https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a94fdf36fb324ecb81e6ef9591091df0
record_format dspace
spelling oai:doaj.org-article:a94fdf36fb324ecb81e6ef9591091df02021-12-02T17:53:28ZDuflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group2527-31592527-316710.15642/mantik.2020.6.2.114-122https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df02020-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/928https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group  of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group   is square-integrable then we compute its Duflo-Moore operator instead of using Fourier transform as in F hr’s work.Edi KurniadiNurul GusrianiBetty SubartiniDepartment of Mathematics, UIN Sunan Ampel Surabayaarticleaffine lie group, duflo-moore operator, square-integrable representation;MathematicsQA1-939ENMantik: Jurnal Matematika, Vol 6, Iss 2, Pp 114-122 (2020)
institution DOAJ
collection DOAJ
language EN
topic affine lie group, duflo-moore operator, square-integrable representation;
Mathematics
QA1-939
spellingShingle affine lie group, duflo-moore operator, square-integrable representation;
Mathematics
QA1-939
Edi Kurniadi
Nurul Gusriani
Betty Subartini
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
description In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group  of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group   is square-integrable then we compute its Duflo-Moore operator instead of using Fourier transform as in F hr’s work.
format article
author Edi Kurniadi
Nurul Gusriani
Betty Subartini
author_facet Edi Kurniadi
Nurul Gusriani
Betty Subartini
author_sort Edi Kurniadi
title Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
title_short Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
title_full Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
title_fullStr Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
title_full_unstemmed Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
title_sort duflo-moore operator for the square-integrable representation of 2-dimensional affine lie group
publisher Department of Mathematics, UIN Sunan Ampel Surabaya
publishDate 2020
url https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df0
work_keys_str_mv AT edikurniadi duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup
AT nurulgusriani duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup
AT bettysubartini duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup
_version_ 1718379185517363200