Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group
In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group is square-int...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a94fdf36fb324ecb81e6ef9591091df0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a94fdf36fb324ecb81e6ef9591091df02021-12-02T17:53:28ZDuflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group2527-31592527-316710.15642/mantik.2020.6.2.114-122https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df02020-10-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/928https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group is square-integrable then we compute its Duflo-Moore operator instead of using Fourier transform as in F hr’s work.Edi KurniadiNurul GusrianiBetty SubartiniDepartment of Mathematics, UIN Sunan Ampel Surabayaarticleaffine lie group, duflo-moore operator, square-integrable representation;MathematicsQA1-939ENMantik: Jurnal Matematika, Vol 6, Iss 2, Pp 114-122 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
affine lie group, duflo-moore operator, square-integrable representation; Mathematics QA1-939 |
spellingShingle |
affine lie group, duflo-moore operator, square-integrable representation; Mathematics QA1-939 Edi Kurniadi Nurul Gusriani Betty Subartini Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
description |
In this paper, we study the quasi-regular and the irreducible unitary representation of affine Lie group of dimension two. First, we prove a sharpening of Fuhr’s work of Fourier transform of quasi-regular representation of . The second, in such the representation of affine Lie group is square-integrable then we compute its Duflo-Moore operator instead of using Fourier transform as in F hr’s work. |
format |
article |
author |
Edi Kurniadi Nurul Gusriani Betty Subartini |
author_facet |
Edi Kurniadi Nurul Gusriani Betty Subartini |
author_sort |
Edi Kurniadi |
title |
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
title_short |
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
title_full |
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
title_fullStr |
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
title_full_unstemmed |
Duflo-Moore Operator for The Square-Integrable Representation of 2-Dimensional Affine Lie Group |
title_sort |
duflo-moore operator for the square-integrable representation of 2-dimensional affine lie group |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2020 |
url |
https://doaj.org/article/a94fdf36fb324ecb81e6ef9591091df0 |
work_keys_str_mv |
AT edikurniadi duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup AT nurulgusriani duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup AT bettysubartini duflomooreoperatorforthesquareintegrablerepresentationof2dimensionalaffineliegroup |
_version_ |
1718379185517363200 |