An autoimmune disease risk variant: A trans master regulatory effect mediated by IRF1 under immune stimulation?

Functional mechanisms remain unknown for most genetic loci associated to complex human traits and diseases. In this study, we first mapped trans-eQTLs in a data set of primary monocytes stimulated with LPS, and discovered that a risk variant for autoimmune disease, rs17622517 in an intron of C5ORF56...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Margot Brandt, Sarah Kim-Hellmuth, Marcello Ziosi, Alper Gokden, Aaron Wolman, Nora Lam, Yocelyn Recinos, Zharko Daniloski, John A Morris, Veit Hornung, Johannes Schumacher, Tuuli Lappalainen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/a9681609f382419c9c62501e1adfff8e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Functional mechanisms remain unknown for most genetic loci associated to complex human traits and diseases. In this study, we first mapped trans-eQTLs in a data set of primary monocytes stimulated with LPS, and discovered that a risk variant for autoimmune disease, rs17622517 in an intron of C5ORF56, affects the expression of the transcription factor IRF1 20 kb away. The cis-regulatory effect specific to IRF1 is active under early immune stimulus, with a large number of trans-eQTL effects across the genome under late LPS response. Using CRISPRi silencing, we showed that perturbation of the SNP locus downregulates IRF1 and causes widespread transcriptional effects. Genome editing by CRISPR had suggestive recapitulation of the LPS-specific trans-eQTL signal and lent support for the rs17622517 site being functional. Our results suggest that this common genetic variant affects inter-individual response to immune stimuli via regulation of IRF1. For this autoimmune GWAS locus, our work provides evidence of the functional variant, demonstrates a condition-specific enhancer effect, identifies IRF1 as the likely causal gene in cis, and indicates that overactivation of the downstream immune-related pathway may be the cellular mechanism increasing disease risk. This work not only provides rare experimental validation of a master-regulatory trans-eQTL, but also demonstrates the power of eQTL mapping to build mechanistic hypotheses amenable for experimental follow-up using the CRISPR toolkit.