Highly Sensitive Whole-Cell Biosensor for Cadmium Detection Based on a Negative Feedback Circuit

Although many whole-cell biosensors (WCBs) for the detection of Cd2+ have been developed over the years, most lack sensitivity and specificity. In this paper, we developed a Cd2+ WCB with a negative feedback amplifier in P. putida KT2440. Based on the slope of the linear detection curve as a measure...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guangbao Zhang, Shuting Hu, Xiaoqiang Jia
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/a9785158a9e04c0888ac9772f0c23e81
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Although many whole-cell biosensors (WCBs) for the detection of Cd2+ have been developed over the years, most lack sensitivity and specificity. In this paper, we developed a Cd2+ WCB with a negative feedback amplifier in P. putida KT2440. Based on the slope of the linear detection curve as a measure of sensitivity, WCB with negative feedback amplifier greatly increased the output signal of the reporter mCherry, resulting in 33% greater sensitivity than in an equivalent WCB without the negative feedback circuit. Moreover, WCB with negative feedback amplifier exhibited increased Cd2+ tolerance and a lower detection limit of 0.1 nM, a remarkable 400-fold improvement compared to the WCB without the negative feedback circuit, which is significantly below the World Health Organization standard of 27 nM (0.003 mg/L) for cadmium in drinking water. Due to the superior amplification of the output signal, WCB with negative feedback amplifier can provide a detectable signal in a much shorter time, and a fast response is highly preferable for real field applications. In addition, the WCB with negative feedback amplifier showed an unusually high specificity for Cd2+ compared to other metal ions, giving signals with other metals that were between 17.6 and 41.4 times weaker than with Cd2+. In summary, the negative feedback amplifier WCB designed in this work meets the requirements of Cd2+ detection with very high sensitivity and specificity, which also demonstrates that genetic negative feedback amplifiers are excellent tools for improving the performance of WCBs.