Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes.
<h4>Background</h4>Hormone-refractory prostate cancer remains hindered by inevitable progression of resistance to first-line treatment with docetaxel. Recent studies suggest that phenotypic changes associated with cancer may be transferred from cell-to-cell via microvesicles/exosomes. He...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a97c7c2322af4f1b9e2ae08a87e51550 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <h4>Background</h4>Hormone-refractory prostate cancer remains hindered by inevitable progression of resistance to first-line treatment with docetaxel. Recent studies suggest that phenotypic changes associated with cancer may be transferred from cell-to-cell via microvesicles/exosomes. Here we aimed to investigate phenotypic changes associated with docetaxel-resistance in order to help determine the complexity of this problem and to assess the relevance of secreted exosomes in prostate cancer.<h4>Methodology/principal findings</h4>Docetaxel-resistant variants of DU145 and 22Rv1 were established and characterised in terms of cross-resistance, morphology, proliferation, motility, invasion, anoikis, colony formation, exosomes secretion their and functional relevance. Preliminary analysis of exosomes from relevant serum specimens was also performed. Acquired docetaxel-resistance conferred cross-resistance to doxorubicin and induced alterations in motility, invasion, proliferation and anchorage-independent growth. Exosomes expelled from DU145 and 22Rv1 docetaxel-resistant variants (DU145RD and 22Rv1RD) conferred docetaxel-resistance to DU145, 22Rv1 and LNCap cells, which may be partly due to exosomal MDR-1/P-gp transfer. Exosomes from prostate cancer patients' sera induced increased cell proliferation and invasion, compared to exosomes from age-matched controls. Furthermore, exosomes from sera of patients undergoing a course of docetaxel treatment compared to matched exosomes from the same patients prior to commencing docetaxel treatment, when applied to both DU145 and 22Rv1 cells, showed a correlation between cellular response to docetaxel and patients' response to treatment with docetaxel.<h4>Conclusions/significance</h4>Our studies indicate the complex and multifaceted nature of docetaxel-resistance in prostate cancer. Furthermore, our in vitro observations and preliminary clinical studies indicate that exosomes may play an important role in prostate cancer, in cell-cell communication, and thus may offer potential as vehicles containing predictive biomarkers and new therapeutic targets. |
---|