Combinatorial optimization by weight annealing in memristive hopfield networks
Abstract The increasing utility of specialized circuits and growing applications of optimization call for the development of efficient hardware accelerator for solving optimization problems. Hopfield neural network is a promising approach for solving combinatorial optimization problems due to the re...
Guardado en:
Autores principales: | Z. Fahimi, M. R. Mahmoodi, H. Nili, Valentin Polishchuk, D. B. Strukov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9912a0b21814b2e85547987c06591ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits
por: F. Merrikh Bayat, et al.
Publicado: (2018) -
Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
por: M. Prezioso, et al.
Publicado: (2018) -
Optimal Generation Dispatch of Ethiopian Power System Using Hybrid Genetic Algorithm-Hopfield Neural Network
por: Shewit Tsegaye, et al.
Publicado: (2022) -
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks
por: Christopher Hillar, et al.
Publicado: (2021) -
4K-memristor analog-grade passive crossbar circuit
por: H. Kim, et al.
Publicado: (2021)