Automated Processing and Phenotype Extraction of Ovine Medical Images Using a Combined Generative Adversarial Network and Computer Vision Pipeline
The speed and accuracy of phenotype detection from medical images are some of the most important qualities needed for any informed and timely response such as early detection of cancer or detection of desirable phenotypes for animal breeding. To improve both these qualities, the world is leveraging...
Guardado en:
Autores principales: | James Francis Robson, Scott John Denholm, Mike Coffey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a9ab647599b74df5b2b93ba334020e43 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Nandhini Abirami R., et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021) -
A Novel Technique for Image Steganalysis Based on Separable Convolution and Adversarial Mechanism
por: Yuwei Ge, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)